Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Using HPC/AI-Accelerated Particle-Resolved Direct Numerical Simulations to Study Microphysics-Turbulence Interactions in Clouds

Liu, Y., Zhang, T., Yu, K. M., Lopez-Marrero, V., Atif, M., Lin, M., Li, L., Yang, F., Sharfuddin, A., Ladeinde, F. (2023): Using HPC/AI-Accelerated Particle-Resolved Direct Numerical Simulations to Study Microphysics-Turbulence Interactions in Clouds, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2622

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Yangang1, Autor
Zhang, Tao1, Autor
Yu, Kwang Min1, Autor
Lopez-Marrero, Vanessa1, Autor
Atif, Mohammad1, Autor
Lin, Meifeng1, Autor
Li, Lingda1, Autor
Yang, Fan1, Autor
Sharfuddin, Abdullah1, Autor
Ladeinde, Foluso1, Autor
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Clouds continue to pose challenges to predict weather, climate and renewable energy due partly to knowledge gaps in microphysics-turbulence interactions. Particle-resolved direct numerical simulations (PR-DNS) that not only resolve the smallest turbulent eddies but also track growing histories of individual particles arguably constitute a fundamental tool to address the special challenges facing microphysics-turbulence interactions in clouds. This study consists of two parts. First, a major bottleneck issue of existing PR-DNS models is the small model domain size (e.g., less or about 1m3) due to high computational cost, which is smaller than many energy-containing eddies and typical grid sizes of large-eddy simulation (LES) models. We will introduce our HPC/AI accelerated PR-DNS model that aims to simulate a domain size of ~ 103m3 to address this computational challenge. Second, we will apply this PR-DNS to investigate three outstanding microphysics-turbulence problems: stochastic condensation/evaporation, turbulent entrainment-mixing, and droplet clustering. Results under different turbulence intensity (e.g., energy dissipation rate), environment conditions (e.g., relative humidity), and microphysical properties (e.g., initial droplet concentration and spectral shape of cloud droplet size distributions) will be analyzed. Also explored will be the role of turbulence-induced supersaturation fluctuations in determining aerosol activation into cloud droplets and droplet deactivation into aerosol particles. The AI/HPC accelerated PR-DNS further allows for examination of dependence of the results on the DNS domain size (or Reynolds number), by running the model with the domain spanning over several order of magnitudes (linear dimension varying from a few centimeters to about 10 meter).

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.57757/IUGG23-2622
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Veranstaltungsort: Berlin
Start-/Enddatum: 2023-07-11 - 2023-07-20

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Potsdam : GFZ German Research Centre for Geosciences
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -