Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data

Chen, N., Tsendbazar, N., Requena Suarez, D., Verbesselt, J., Herold, M. (2023): Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data. - Remote Sensing in Ecology and Conservation, 9, 4, 553-567.
https://doi.org/10.1002/rse2.328

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5019316.pdf (Verlagsversion), 2MB
Name:
5019316.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chen, Na1, Autor
Tsendbazar, Nandin‐Erdene1, Autor
Requena Suarez, Daniela1, Autor
Verbesselt, Jan1, Autor
Herold, Martin2, Autor              
Pettorelli, Nathalie1, Herausgeber
Abdi, Abdulhakim1, Herausgeber
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Characterization of regrowing forests is vital for understanding forest dynamics to assess the impacts on carbon stocks and to support sustainable forest management. Although remote sensing is a key tool for understanding and monitoring forest dynamics, the use of exclusively remotely sensed data to explore the effects of different variables on regrowing forests across all biomes in Brazil has rarely been investigated. Here, we analyzed how environmental and human factors affect regrowing forests. Based on Brazil's secondary forest age map, 3060 locations disturbed between 1984 and 2018 were sampled, interpreted and analyzed in different biomes. We interpreted the time since disturbance for the sampled pixels in Google Earth Engine. Elevation, slope, climatic water deficit (CWD), the total Nitrogen of soil, cation exchange capacity (CEC) of soil, surrounding tree cover, distance to roads, distance to settlements and fire frequency were analyzed in their importance for predicting aboveground biomass (AGB) and tree cover derived from global forest aboveground biomass map and tree cover map, respectively. Results show that time since disturbance interpreted from satellite time series is the most important predictor for characterizing AGB and tree cover of regrowing forests. AGB increased with increasing time since disturbance, surrounding tree cover, soil total N, slope, distance to roads, distance to settlements and decreased with larger fire frequency, CWD and CEC of soil. Tree cover increased with larger time since disturbance, soil total N, surrounding tree cover, distance to roads, distance to settlements, slope and decreased with increasing elevation and CWD. These results emphasize the importance of remotely sensing products as key opportunities to improve the characterization of forest regrowth and to reduce data gaps and uncertainties related to forest carbon sink estimation. Our results provide a better understanding of regional forest dynamics, toward developing and assessing effective forest-related restoration and climatic mitigation strategies.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-04-272023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/rse2.328
GFZPOF: p4 T5 Future Landscapes
GFZPOFCCA: p4 CARF RemSens
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Remote Sensing in Ecology and Conservation
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 9 (4) Artikelnummer: - Start- / Endseite: 553 - 567 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/190816
Publisher: Zoological Society of London
Publisher: Wiley