Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Application of machine learning methods to detection and interpretation of reservoir triggered seismicity

Wiszniowski, J., Lizurek, G., Staszek, M., Plesiewicz, B. (2023): Application of machine learning methods to detection and interpretation of reservoir triggered seismicity, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3286

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wiszniowski, Jan1, Autor
Lizurek, Grzegorz1, Autor
Staszek, Monika1, Autor
Plesiewicz, Beata1, Autor
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: By using machine learning (ML) techniques we can increase the efficiency of the detection of clusters and mapping the rupture areas, which may be further analyzed in the context of the seismogenic process related to local tectonics and hydrogeological background. We are currently seeing an eruption in ML applications from seismology, however, reservoir-triggered seismicity (RTS) has some aspects that require an individual approach. It is mainly due to the following factors: a small number of mainly weak earthquakes limiting the training of deep learning, and seismicity often appears in unexpected areas and as swarms. Above all, such type of seismicity depends on anthropogenic and hydrological conditions. We compared deep learning methods of event detection and location, our own artificial neural network, and other similarity detection methods.We study also the possibilities of ML in searching for seismic clusters in the time and space domain, in the interpretation of the event locations and focal mechanisms of the repeaters with the tectonics, and in dynamic relationships between hydrodynamic changes and the RTS with the use of recurrent neural networks. This work was supported by research project no. 2021/41/B/ST10/02618, funded by the National Science Centre, Poland under agreement no. UMO-2021/41/B/ST10/02618.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 20232023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.57757/IUGG23-3286
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Veranstaltungsort: Berlin
Start-/Enddatum: 2023-07-11 - 2023-07-20

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Potsdam : GFZ German Research Centre for Geosciences
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -