English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Glacier observational data assimilation for mass balance modelling in Svalbard

Cao, W., Schmidt, L. S., Aalstad, K., Westermann, S., Schuler, T. V. (2023): Glacier observational data assimilation for mass balance modelling in Svalbard, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3280

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cao, Wenxue1, Author
Schmidt, Louise Steffensen1, Author
Aalstad, Kristoffer1, Author
Westermann, Sebastian1, Author
Schuler, Thomas V.1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Accurate estimation of glacier mass balance is vital in several fields, including climate change impact assessment and water resource management. However, classical modelling approaches on a regional scale are usually hampered by uncertainties in forcing data, model structure, and parameter values. Data assimilation is a method to incorporate observations into modellings and to effectively reduce the uncertainty of results. So far, it has been rarely used in glacier mass balance modelling. Here, we test different assimilation methods, including ensemble Kalman filters and smoothers, to incorporate albedo derived from MODIS data and stake readings from in-situ mass-balance measurements into an energy balance model applied to Svalbard glaciers. The overall objective is to improve the accuracy of glacier mass balance reconstruction and forecasting in Svalbard by combining observations and models. In a range of experiments, we analyze the performance of different assimilation methods and different observation products. One of the research challenges is to identify the information content of different observations and determine at which level they influence the model behaviour. We compare the prior and posterior states to help disentangle which process or forcing has the most impact on the uncertainty of the model’s results.

Details

show
hide
Language(s): eng - English
 Dates: 20232023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3280
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -