English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Hotspots of the stokes rotating circulation in a large marginal sea

Gan, J., Kung, H., Cai, Z., Liu, Z., Hui, R., Li, J. (2023): Hotspots of the stokes rotating circulation in a large marginal sea, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3144

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gan, Jianping1, Author
Kung, Hiusuet1, Author
Cai, Zhongya1, Author
Liu, Zhiqiang1, Author
Hui, Rex1, Author
Li, Juno1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Marginal seas, surrounded by continents with dense populations, are vulnerable and have a quick response to climate change effects. The seas typically have alternatively rotating layered circulations to regulate regional heat and biogeochemical transports. The circulations are composed of dynamically active hotspots and governed by the couplings between unique extrinsic inflow and intrinsic dynamic response. Ambiguities about the circulations’ structure, composition, and physics still exist, and these ambiguities have led to poor numerical simulation of the marginal sea in global models. The South China Sea is an outstanding example of a marginal sea that has this typical rotating circulation. Our study demonstrates that the rotating circulation is structured by energetic hotspots with large vorticity arising from unique dynamics in the marginal sea and is identifiable by the constraints of Stokes Theorem. These hotspots contribute most of the vorticity and most of energy needed to form and maintain the rotating circulation pattern. Our findings provide new insights on the distinguishing features of the rotating circulation and the dominant physics with the objectives of advancing our knowledge and improving modeling of marginal seas.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3144
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -