English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimation of extreme floods using a statistical and conceptual model of the hydrological response

Devò, P., Basso, S., Marani, M. (2023): Estimation of extreme floods using a statistical and conceptual model of the hydrological response, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3919

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Devò, Pietro1, Author
Basso, Stefano1, Author
Marani, Marco1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: The robust estimation of extreme flood magnitude in poorly observed or ungauged basins is of critical importance for designing mitigation measures, particularly in the presence of anthropogenic environmental change and accelerating climatic changes. Traditional methods for estimating flood extremes are strongly limited by the availability of sufficiently long timeseries as these are typically designed to use annual maxima or a few values above a high threshold. In the present work we use a recent statistical model, the Metastatistical Extreme Values (MEV) distribution, in combination with a conceptual model of flood generation processes, the Phisically-based Extreme Values (PhEV) distribution, to explore the possible estimation of high quantiles where few or no observations exist. The main novelty of the approach is the ability of extracting extreme streamflow values from "ordinary" streamflow peaks and to provide a characterization based on a limited and physically meaningful set of hydrological parameters. The proposed methodology aims to overcome limitations in data availability by exploiting the relatively large number of daily observations available even in short time series (as opposed to the low number of yearly maxima) and a few hydrological attributes of the catchment that may be "guessed" on the basis of limited information. A large-scale application on 178 catchments in Germany allows us to formulate a reliable calibration technique and to show its controllable estimation uncertainty: the median relative error computed on predicted extreme streamflow values is globally contained between -25% and +50%:.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3919
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -