English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Crustal S-wave velocity and azimuthal anisotropy beneath the southern Sichuan-Yunnan block in the SE Tibetan Plateau from multiple seismic arrays

Li, Y., Gao, Y., Tian, J. (2023): Crustal S-wave velocity and azimuthal anisotropy beneath the southern Sichuan-Yunnan block in the SE Tibetan Plateau from multiple seismic arrays, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3698

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, Ying1, Author
Gao, Yuan1, Author
Tian, Jianhui1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: The southern Sichuan-Yunnan block (SYB) is intersected by the NW-striking Honghe faults (HHF) and the nearly NS-trending Xiaojiang faults (XJF), providing an excellent zone for exploring severe crustal deformation and complicated tectonic movement. However, the crustal-mantle deformation mechanisms are still controversial, partially due to the lack of detailed information. With ambient noise data from several temporary seismic arrays and regional permanent seismic stations, we applied the direct surface wave tomography to obtain S-wave velocity and azimuthal anisotropy simultaneously. The crustal S-wave structures show complex heterogeneity both horizontally and vertically, relating to geologic settings and large faults. In the mid-lower crust, there are two significant low-velocity anomalies with strong azimuthal anisotropy, with the NNW-SSE direction near the northwest end of HHF and the NE-SW direction around the mid-south segment of XJF, respectively. The fast axis within the SYB shows approximately in the N-S direction, which differs from those in the low-velocity zones on its east and west sides. Therefore, we consider the ductile deformation in the mid-lower crust is more likely restricted by large faults. At the end of the wedged intersection, the southward mid-lower crustal flow could be blocked by the HHF, resulting in the weak materials distributed along the faults rather than crossing over at large-scale. Combining other independent studies, we conclude that there may be different deformation between the crust and the lithospheric mantle. This 3-D model provides important constraints for the regional deformations and plate tectonics of the large boundary faults [supported by NSFC Project 41730212].

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3698
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -