English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Temporally correlated signals in GRACE TWS data, and implications on the choice of functional and stochastic TWS time series models

Hohensinn, R., Lasser, M., Meyer, U., Rast, M. (2023): Temporally correlated signals in GRACE TWS data, and implications on the choice of functional and stochastic TWS time series models, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4529

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hohensinn, Roland1, Author
Lasser, Martin1, Author
Meyer, Ulrich1, Author
Rast, Michael1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: For a reliable quantification of terrestrial water storage (TWS) variations, it is important to provide functional and stochastic models that best explain the data. Although spatial covariance models of GRACE/GRACE-FO TWS data are well developed, temporal covariances are often left unexplained. However, this results in unrealistic and too optimistic parameter uncertainties, i.e. those of TWS trends. By assessing the post-fit residuals of the global gravis TWS dataset, we show that the standard TWS time series model should account for the existence of temporal correlations that are present in the data. For a major part of TWS data, power-law noise models explain temporal covariances. We further show that the magnitude of estimated uncertainties of the trend function strongly depend on the intensity of time correlations. By means of a clustering analysis it is demonstrated, that certain regions (e.g., river basis) can be characterized and separated by common-mode TWS signals, which supports the explanation of regional hydrological effects. We highlight how these signals can be parameterized in the functional model, and how optimal model combinations can be chosen by means of information criteria. To the end, we apply the same methodology to the JPL mascon RL06 dataset, and explore differences in noise and signals w.r.t. the gravis dataset. We conclude that – to accurately quantify hydrological variations – the TWS uncertainty budged should account for temporal correlations present in the data. Until not all TWS signal constituents are explained and validated, an empirical noise calibration method provides a realistic explanation of TWS data uncertainties.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4529
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -