English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Studying the representation of macro- and microphysical cloud properties at Ny-Ålesund in ICON

Kiszler, T., Ebell, K., Schemann, V. (2023): Studying the representation of macro- and microphysical cloud properties at Ny-Ålesund in ICON, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4570

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kiszler, Theresa1, Author
Ebell, Kerstin1, Author
Schemann, Vera1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Clouds play a role in the changing Arctic climate, and are currently the cause for large uncertainties in climate projections. Therefore, we used the ICON model and a large set of observations to study the representation of clouds in the model for an Arctic location (Ny-Ålesund, Svalbard). Using several months of high-resolution ICON simulations, we evaluated the representation of the liquid water path, integrated water vapour, as well as vertical profiles of humidity and temperature. We found a good agreement in the large-scale dynamics and variables between the model and observations we used from the super-site AWIPEV which is located in Ny-Ålesund. As next step we are working on understanding the deficiencies which we found related to the phase-partitioning in the clouds. The phase-partitioning showed too much ice production in the model. To achieve a better understanding of the deficiencies we created a tool to output the process tendencies of the 2-moment microphysics scheme, implemented in ICON. With this we can evaluate the role each microphysical process plays for the development and evolution of the clouds. The previously run simulations are used to identify the influence of specific processes under certain environmental conditions on the increased ice production. We will show first results of this analysis and suggestions for processes that have to be improved to gain a more accurate phase-partitioning.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4570
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -