English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Characterizing precipitation and accumulation variability at Hercules dome, Antarctica

Reusch, D., Steig, E., Fudge, T., Hills, B., Horlings, A., Holschuh, N., Christian, J. E., Davidge, L., Hoffman, A., O'Connor, G., Christianson, K., Kirkpatrick, L., Erwin, E. (2023): Characterizing precipitation and accumulation variability at Hercules dome, Antarctica, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4749

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Reusch, David1, Author
Steig, Eric1, Author
Fudge, Tyler1, Author
Hills, Benjamin1, Author
Horlings, Annika1, Author
Holschuh, Nicholas1, Author
Christian, John Erich1, Author
Davidge, Lindsey1, Author
Hoffman, Andrew1, Author
O'Connor, Gemma1, Author
Christianson, Knut1, Author
Kirkpatrick, Liam1, Author
Erwin, Emma1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Hercules Dome is an ice divide at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 °S, 105 °W, with optimal glaciological conditions for the recovery of a long, well-dated ice core. Understanding local variability of snow accumulation is an important step in interpreting ice core records, for regional context, to identify local patterns and to know where ice at depth originated. We explore the strengths/weaknesses of ice cores, ice-penetrating radar and meteorological forecast models for estimating precipitation and accumulation on varying time and space scales at this site. Annual layering in the 2002 72-m US-ITASE ice core 02-4 indicates an accumulation rate of 0.12 m/yr ice equivalent over the last 300 years while nearby radio-echo sounding traverse data suggest 0.09-0.11 m/yr over the past 18,000 years (Jacobel et al, 2005 with revisions). Recent (2019/20) site selection radar data yield a 420-year average rate of ~0.11-0.14 m/yr (Fudge et al, 2022). The Polar WRF-based Antarctic Mesoscale Prediction System (AMPS) archive provides 5+ years of operational meteorological forecasts at a spatial resolution (2.7 km) close to the feature scale of this region. ERA-5 provides a longer (40+ years), more consistent reanalysis dataset at a reduced scale (30 km). Neither of these models fully resolves site topography. Preliminary results indicate general agreement of model averages with prior glaciological/radar estimates. Additional analyses will investigate spatial and temporal variability in the model datasets. Comprehensive understanding will require further meteorological modeling, processing of recent field-based datasets and synthesis of results.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4749
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -