English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Understanding non-linear ground response from volcanic explosions and Distributed Dynamic Strain Sensing (DDSS) parameters: An example from Mt. Etna, Italy

Diaz Meza, S. A., Jousset, P., Currenti, G., Wollin, C., Costes, L., Krawczyk, C., Chalari, A., Clarke, A. (2023): Understanding non-linear ground response from volcanic explosions and Distributed Dynamic Strain Sensing (DDSS) parameters: An example from Mt. Etna, Italy, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4924

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Diaz Meza, Sergio Andres1, 2, Author              
Jousset, P.1, 2, Author              
Currenti, Gilda2, Author
Wollin, Christopher1, 2, Author              
Costes, Lucile1, 2, Author              
Krawczyk, C.M.1, 2, Author              
Chalari, Athena2, Author
Clarke, Andy2, Author
Affiliations:
12.2 Geophysical Imaging of the Subsurface, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_66027              
2IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Distributed Dynamic Strain Sensing (DDSS), a.k.a. Distributed Acoustic Sensing (DAS), is becoming a popular tool for volcano monitoring. The sensing method relies on measuring the phase-shift of Rayleigh back-scattered light throughout the fibre due to strain variations in the fibre glass. This provides distributed strain-rate measurements at fine temporal and spatial sampling intervals. During 3 months in 2019, we recorded signals from thousands of mild volcanic explosions from Mt. Etna using a multi-instrument network deployed in an area at ca. 2.5 km distance from the active craters. Infrasound sensors were laying at the surface with a dense array of broadband seismometers (BB). Two types of fibres were also buried ca. 30 cm depth in the non-consolidated scoria from the area. First fibre was a 1.5 km long standard fibre, interrogated with an iDAS unit. The second fibre was a 0.5 km long engineered fibre, interrogated with a Carina unit. Relation between infrasound and DDSS data suggests a ground response of the loose scoria due to the acoustic pressure waves from explosions. Further analysis suggests a non-linear relationship between acoustic pressure and strain-rate data. However, signal saturation is encounter in some of the strain-rate data, which affects the interpretation of the non-linear relation. Therefore, we present an algorithm to correct the signal artefacts, allowing us to restore the true strain-rate signal and exceed the dynamic range limited by the initial DDSS recording parameters. The outcome includes strategies in the selection of acquisition parameters prior to DDSS campaigns to avoid signal saturation.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4924
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -