English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Combining remotely sensed evapotranspiration and an agroecosystem model to estimate center-pivot irrigation water use at high spatio-temporal resolution

Zhang, J. (2023): Combining remotely sensed evapotranspiration and an agroecosystem model to estimate center-pivot irrigation water use at high spatio-temporal resolution, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-5009

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zhang, Jingwen1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Estimating irrigation water use accurately is critical for sustainable irrigation and studying terrestrial water cycle in irrigated croplands. However, irrigation is not monitored in most places, and current estimations of irrigation water use has coarse spatial and/or temporal resolutions. This study aims to estimate irrigation water use at the daily and field scale through the proposed model-data fusion framework, which is achieved by particle filtering with two configurations (concurrent, CON, and sequential, SEQ) by assimilating satellite-based evapotranspiration (ET) observations into an advanced agroecosystem model, ecosys. Two types of experiments using synthetic and real ET observations were conducted to study the efficacy of the proposed framework for estimating irrigation water use at the irrigated fields in eastern and western Nebraska, United States. The experiments using synthetic ET observations indicated that, for two major sources of uncertainties of ET difference between observations and model simulations, which are bias and noise, noise had larger impacts on degrading the estimation performance of irrigation water use than bias. For the experiments using real ET observations, monthly and annual estimations of irrigation water use matched well with farmer irrigation records, with Pearson correlation coefficient (r) around 0.80 and 0.50, respectively. Although detecting daily irrigation records was very challenging, our method still gave a good performance with RMSE, BIAS, and r around 2.90 mm/d, 0.03 mm/d, and 0.4, respectively. Our proposed model-data fusion framework for estimating irrigation water use at high spatio-temporal resolution could contribute to regional water management, sustainable irrigation, and better tracking terrestrial water cycle.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-5009
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -