English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Explaining and predicting the ocean conveyor

Frajka-Williams, E., The Explaining and Predicting the Ocean Conveyor team (2023): Explaining and predicting the ocean conveyor, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4543

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Frajka-Williams, Eleanor1, Author
The Explaining and Predicting the Ocean Conveyor team1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: EPOC will generate a new conceptual framework for the Atlantic meridional overturning circulation, to understand how it functions in the Earth system, and how it impacts weather and climate. The AMOC is a key component of the climate system, responsible for ocean heat and freshwater transport, associated with the ventilation of anthropogenic carbon, and anticipated to experience or drive climate tipping points. However, the link between ocean transport, ventilation and tipping points relies on the common conceptual view of the AMOC as a ‘great ocean conveyor’ which was developed to explain very long timescale (glacial-interglacial) fluctuations in climate. The conveyor belt schematic conflates millennial timescales with human timescales (days to 100 years), leading to misconceptions by the observing and modelling communities, and misplaced expectations about the AMOC’s role in climate. EPOC will capitalise on new understanding about the AMOC variability and coherence from two decades of AMOC observations and advances in ocean observing technology and climate modelling in order to develop new tools and approaches to quantify and explain past AMOC change and how its connectivity (or lack thereof) imprint on the Earth system. Through joined-up observational and model experiments, focussing on next generation high resolution coupled models, machine learning techniques and critical re-assessment of paleo proxies, EPOC will generate a new conceptual framework for the AMOC, its meridional connectivity, feedbacks and the relationship between ventilation and overturning on human timescales. This will lead to better predictions of the AMOC and related climate evolution, including the risk of rapid change.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4543
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -