English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  250 years of snow accumulation and summertime melt in the coastal Dronning Maud Land, East Antarctica

Dey, R., Thamban, M., Laluraj, C. M., Matsuoka, K. (2023): 250 years of snow accumulation and summertime melt in the coastal Dronning Maud Land, East Antarctica, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4184

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Dey, Rahul1, Author
Thamban, Meloth1, Author
Laluraj, Chavarukonam Madhavanpillai1, Author
Matsuoka, Kenichi1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: The mass balance of coastal Antarctica is significantly affected by warming in low-elevation areas. Summer melting in Antarctica can be a major concern in the warming climate scenario, but very few records exist for the coastal region. We present a 250-year ice core record of snow accumulation and summertime melting history from an ice core drilled at the summit of the Djupranen Ice Rise in coastal Dronning Maud Land, East Antarctica. Water-stable isotopes, visual stratigraphy, and major ion profiles were used to establish chronologies constrained by non-sea salt sulphate and tritium anomaly records. The melt index is calculated as the water-equivalent ratio of all melt layers in a year to total annual accumulation. The yearly average accumulation rate is 0.32 ± 0.14 m w.e. a-1, while the yearly mean melt rate is 1 ± 1.25 %. The ice core record shows a significant decrease in snow accumulation rates in recent decades. Accumulation rates show high variability, with a significant decline since the 1980s. Annual melt was surprisingly higher in the pre-industrial era (before 1850 CE), averaging 1.3 % compared to 0.9 % in the present. We observed melting events in 184 out of 248 years, with the lowest melting period being 1796–1809. There is no correlation between ERA5 2m temperature and annual melt or δ18O. In contrast, the ERA5 total precipitation trend is the opposite of annual snow accumulation from the ice core, suggesting a complex mechanism affecting the region's seasonal melting and snow accumulation rates.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4184
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -