hide
Free keywords:
-
Abstract:
The determination of inside-canopy micrometeorological conditions is an important preparatory step towards modelling the snow processes interception, sublimation, accumulation and melt in forests. Often, the required observations of the meteorological variables used in the modelling are lacking. Hence, transfer functions can be utilized to scale the meteorological observations from the open to the conditions inside the forest, depending on parameters which describe the relevant features of the trees important for their effect on the meteorological conditions. The study site in Berchtesgaden National Park offers a broad amount of forest measurements. Due to a difference in altitude of around 1500 m, meteorological variations are large. This is especially visible in spring and autumn, when the vegetation at higher regions still is snow covered while the temperatures in the lower regions are high enough for evapotranspiration to occur. We use the distributed physically-based snow hydrological model openAMUNDSEN to conduct the respective meteorological and snow simulations. The model can simultaneously consider both snow interception and subsequent sublimation and melt, as well as evapotranspiration processes inside the considered forests. We present and evaluate the simulation of the meteorological variables and first results for the combination of the different hydrological processes inside the canopies of the National Park area to demonstrate their spatial and temporal patterns. Ultimately, we aim to model the inside-canopy snow processes to identify potential effects of climate change refuges and hotspots in high mountain regions.