Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Stability Of Magnesite In The Presence Of Hydrous Fluids Up To 12 Gpa: Insights Into Subduction Zone Processes And Carbon Cycling In The Earth’s Mantle

Sieber, M. J., Reichmann, H.-J., Farla, R., Koch-Müller, M. (2024): Stability Of Magnesite In The Presence Of Hydrous Fluids Up To 12 Gpa: Insights Into Subduction Zone Processes And Carbon Cycling In The Earth’s Mantle. - American Mineralogist, 109, 7, 1153-1161.
https://doi.org/10.2138/am-2023-8982

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sieber, Melanie J.1, Autor              
Reichmann, Hans-Josef1, Autor              
Farla, Robert2, Autor
Koch-Müller, M.1, Autor              
Affiliations:
13.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146036              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Deep Carbon Cycle, Brucite dehydration, Magnesite Melting, EDXRD, Physics and Chemistry of Earth's Deep Mantle and Core
 Zusammenfassung: Understanding the stability of magnesite in the presence of a hydrous fluid in the Earth’s upper mantle is crucial for modelling the carbon budget and cycle in the deep Earth. This study elucidates the behavior of magnesite in the presence of hydrous fluids. We examined the brucite magnesite (Mg(OH)2-MgCO3) system between 1 and 12 GPa by using synchrotron in situ energy dispersive X-ray diffraction experiments combined with textural observations from quenched experiments employing the falling sphere method. By subjecting magnesite to varying pressure-temperature conditions with controlled fluid proportion, we determined the stability limits of magnesite in the presence of a fluid and periclase. The observed liquidus provides insights into the fate of magnesite-bearing rocks in subduction zones. Our findings show that magnesite remains stable under typical subduction zone gradients even when infiltrated by hydrous fluids released from dehydration reactions during subduction. We conclude that magnesite can be subducted down to and beyond sub-arc depths. Consequently, our results have important implications for the carbon budget of the Earth’s mantle and its role in regulating atmospheric CO2 levels over geological timescales.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 20242024
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.2138/am-2023-8982
GFZPOF: p4 T3 Restless Earth
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: American Mineralogist
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 109 (7) Artikelnummer: - Start- / Endseite: 1153 - 1161 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals22
Publisher: Mineralogical Society of America (MSA)