English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  LA-ICP-MS/MS-based Rb–Sr isotope mapping for geochronology

Kutzschbach, M., Glodny, J. (2024): LA-ICP-MS/MS-based Rb–Sr isotope mapping for geochronology. - Journal of Analytical Atomic Spectrometry, 39, 2, 455-477.
https://doi.org/10.1039/D3JA00297G

Item is

Files

show Files
hide Files
:
5025230.pdf (Publisher version), 5MB
Name:
5025230.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Kutzschbach, Martin1, Author
Glodny, J.2, Author              
Affiliations:
1External Organizations, ou_persistent22              
23.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Content

show
hide
Free keywords: -
 Abstract: This study introduces a new approach for in situ Rb–Sr dating that utilizes rapid line scans instead of static spot ablation, enabling the creation of two-dimensional 87Rb/86Sr and 87Sr/86Sr isotope ratio and Rb–Sr age maps. The data acquisition is conducted utilizing an ICP-MS/MS instrument with N2O as the reaction gas, coupled to a 193 nm excimer laser via a low-aerosol-dispersion interface. This configuration allows for high repetition rates (>100 Hz) and sensitivities, enabling data acquisition at a high scanning speed and small laser beam size (3–4 μm). Notably, this approach requires just about 1/30 of the sample volume typically utilized in conventional spot ablation mode, while achieving similar levels of precision and accuracy. Line scan ablation is tested and compared to spot ablation on age-homogeneous crystalline muscovite and biotite, for which reference Rb–Sr age data is acquired through ID-TIMS. Results show that a key requirement for accurate Rb–Sr ages based on line scan analyses is matrix correction using chemically matched crystalline mica. By presenting Rb–Sr age maps of three naturally deformed mica samples, we highlight the potential of Rb–Sr mapping for extracting age data from rocks that exhibit complex metamorphic-metasomatic histories and microscale dynamic recrystallization. Additionally, we show that quantitative elemental information (Al, Fe, Si, Li) can be collected alongside Rb–Sr isotope data. This advancement offers a distinctly more insightful assessment of isotope mobility in natural systems, the timing of element enrichment processes and enables, in high-Rb/Sr rock systems, precise and accurate isotopic dating of intricate geological processes at small scales.

Details

show
hide
Language(s): eng - English
 Dates: 20242024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/D3JA00297G
GFZPOF: p4 T3 Restless Earth
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Analytical Atomic Spectrometry
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 39 (2) Sequence Number: - Start / End Page: 455 - 477 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals239
Publisher: Royal Society of Chemistry (RSC)