English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway

Straume, E. O., Steinberger, B., Becker, T. W., Faccenna, C. (2024): Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway. - Earth and Planetary Science Letters, 630, 118615.
https://doi.org/10.1016/j.epsl.2024.118615

Item is

Files

show Files
hide Files
:
5025233.pdf (Publisher version), 12MB
Name:
5025233.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Straume, Eivind O.1, Author
Steinberger, B.2, Author              
Becker, Thorsten W.1, Author
Faccenna, Claudio3, Author              
Affiliations:
1External Organizations, ou_persistent22              
22.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146031              
34.1 Lithosphere Dynamics, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146034              

Content

show
hide
Free keywords: Paleogeography Oceanic gateways Mantle convection Dynamic topography Paleoclimate Geodynamics
 Abstract: The West Siberian Seaway connected the Tethys to the Arctic Ocean in the Paleogene and played an important role for Eurasian-Arctic biogeography, ocean circulation, and climate. However, the paleogeography and geological mechanisms enabling the seaway are not well constrained, which complicates linking the seaway evolution to paleoenvironmental changes. Here, we investigate the paleogeography of the Peri-Tethys realms for the Cenozoic time (66–0 Ma), including the West Siberian Seaway, and quantify the influence of mantle convection and corresponding dynamic topography. We start by generating continuous digital elevation models for Eurasia, Arabia, and Northern Africa, by digitizing regional paleogeographic maps and additional geological information and incorporate them in a global paleogeography model with nominal million-year resolution. Then we compute time-dependent dynamic topography for the same time interval and find a clear correlation between changes in dynamic topography and the paleogeographic evolution of Central Eurasia and the West Siberian Seaway. Our results suggest that mantle convection played a greater role in Eurasian paleogeography than previously recognized. Mantle flow may have influenced oceanic connections between the Arctic and global ocean providing a link between deep mantle convection, surface evolution, and environmental changes. Our reconstructions also indicate that the Arctic Ocean may have been isolated from the global ocean in the Eocene, even if the West Siberian Seaway was open, as the Peri-Tethys – Tethys connection was limited, and the Greenland-Scotland Ridge was a landbridge.

Details

show
hide
Language(s): eng - English
 Dates: 2024-03-152024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.epsl.2024.118615
GFZPOF: p4 T3 Restless Earth
GFZPOFWEITERE: p4 T5 Future Landscapes
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth and Planetary Science Letters
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 630 Sequence Number: 118615 Start / End Page: - Identifier: ISSN: 0012-821X
ISSN: 1385-013X
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals99
Publisher: Elsevier