Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hydrological constraints on the potential of enhanced geothermal systems in the ductile crust

Scott, S., Yapparova, A., Weis, P., Houde, M. (2024): Hydrological constraints on the potential of enhanced geothermal systems in the ductile crust. - Geothermal Energy, 12, 10.
https://doi.org/10.1186/s40517-024-00288-4

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5025449.pdf (Verlagsversion), 7MB
Name:
5025449.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Scott, Samuel1, Autor
Yapparova, Alina1, Autor
Weis, Philipp2, Autor              
Houde, Matthew1, Autor
Affiliations:
1External Organizations, ou_persistent22              
23.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Continental crust at temperatures > 400 °C and depths > 10–20 km normally deforms in a ductile manner, but can become brittle and permeable in response to changes in temperature or stress state induced by fluid injection. In this study, we quantify the theoretical power generation potential of an enhanced geothermal system (EGS) at 15–17 km depth using a numerical model considering the dynamic response of the rock to injection-induced pressurization and cooling. Our simulations suggest that an EGS circulating 80 kg s−1 of water through initially 425 ℃ hot rock can produce thermal energy at a rate of ~ 120 MWth (~ 20 MWe) for up to two decades. As the fluid temperature decreases (less than 400 ℃), the corresponding thermal energy output decreases to around 40 MWth after a century of fluid circulation. However, exploiting these resources requires that temporal embrittlement of nominally ductile rock achieves bulk permeability values of ~ 10–15–10–14 m2 in a volume of rock with dimensions ~ 0.1 km3, as lower permeabilities result in unreasonably high injection pressures and higher permeabilities accelerate thermal drawdown. After cooling of the reservoir, the model assumes that the rock behaves in a brittle manner, which may lead to decreased fluid pressures due to a lowering of thresholds for failure in a critically stressed crust. However, such an evolution may also increase the risk for short-circuiting of fluid pathways, as in regular EGS systems. Although our theoretical investigation sheds light on the roles of geologic and operational parameters, realizing the potential of the ductile crust as an energy source requires cost-effective deep drilling technology as well as further research describing rock behavior at elevated temperatures and pressures.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-03-292024
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1186/s40517-024-00288-4
GFZPOF: p4 T8 Georesources
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geothermal Energy
Genre der Quelle: Zeitschrift, Scopus, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 12 Artikelnummer: 10 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/131118
Publisher: Springer Nature