English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Regional effects of paleoclimate history on the subsurface temperature distribution in Germany

Salis Gross, E., Frick, M., Norden, B., Mutz, S. G., Fuchs, S. (2024): Regional effects of paleoclimate history on the subsurface temperature distribution in Germany - Abstracts, EGU General Assembly 2024 (Vienna, Austria and Online 2024).
https://doi.org/10.5194/egusphere-egu24-12754

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Salis Gross, Eskil1, Author              
Frick, M.1, Author              
Norden, Ben1, Author              
Mutz, S. G., Author
Fuchs, Sven1, Author              
Affiliations:
14.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146039              

Content

show
hide
Free keywords: Poster
 Abstract: Knowledge of the underground temperature distribution is crucial for evaluating geothermal potential and ensuring the long-term safety of heat-producing waste in repositories. Previous research, mainly conducted in Northern Europe and Canada, has shown that the Pleistocene Glaciations have an additive effect, resulting in a cooling of several degrees Celsius at depths of up to two kilometers. Recent studies indicate that the Last Glacial Period and the recent warming of the past 100–150 years have the greatest paleoclimatic impact on the current shallow to medium depth subsurface temperature distribution in Germany. If thermophysical properties of the subsurface are known, the distribution of underground temperatures can also be used to reconstruct the local ground surface temperature history using borehole climatology. Ground surface temperature reconstructions have low temporal resolutions, but they are directly reconstructed from temperature measurements without the use of climate proxies. Observations of the subsurface temperature distribution are limited to boreholes that are undisturbed by drilling or operations like production tests. Furthermore, the coupling of ground surface temperatures and surface air temperatures presents a significant challenge due to complex and transient surface processes associated with soil types, precipitation, vegetation, and the distribution of water bodies and glaciers. A systematic study of the paleoclimatic impact on the subsurface temperature distribution in sedimentary regions in Germany has not yet been conducted. Moreover, borehole climatology studies in Canada and Northern Europe has mainly concentrated on local reconstructions of ground surface temperatures, focusing on single or a limited number of boreholes. The aim of this study is to investigate the paleoclimatic effect of the Holocene on the subsurface temperature distribution in Germany and to quantify regional variations in the ground surface temperature histories. To achieve this, we have identified wells in sedimentary regions across the country that satisfy the prerequisites for borehole climatology. By using geophysical well logs, we derive the thermophysical characterization of the subsurface. We are examining the continuous temperature profiles to determine the magnitude, and regional variability of the Holocene paleoclimatic signal in borehole temperature profiles throughout Germany.

Details

show
hide
Language(s):
 Dates: 2024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/egusphere-egu24-12754
GFZPOF: p4 T8 Georesources
 Degree: -

Event

show
hide
Title: EGU General Assembly 2024
Place of Event: Vienna, Austria and Online
Start-/End Date: 2024-04-14 - 2024-04-19

Legal Case

show

Project information

show

Source 1

show
hide
Title: Abstracts
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -