English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sediment-redox dynamics in an oligotrophic deep-water lake in Tierra del Fuego: insights from Fe isotopes

Ordoñez Rendón, L. G., Neugebauer, I., Thomas, C., Chiaradia, M., Waldmann, N., Ariztegui, D. (2024 online): Sediment-redox dynamics in an oligotrophic deep-water lake in Tierra del Fuego: insights from Fe isotopes. - Journal of Paleolimnology.
https://doi.org/10.1007/s10933-024-00316-0

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ordoñez Rendón, Luis Gabriel1, Author
Neugebauer, I.2, Author              
Thomas, Camille1, Author
Chiaradia, Massimo1, Author
Waldmann, Nicolas1, Author
Ariztegui, Daniel1, Author
Affiliations:
1External Organizations, ou_persistent22              
24.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146046              

Content

show
hide
Free keywords: Fe speciation · Fe oxyhydroxides · Laminated sediments · Redox fronts · Limnological processes
 Abstract: For long time in the history of Earth, ferruginous conditions governed the oceans. With the rise of oxygen during the Proterozoic era and the subsequent evolution of living organisms, worldwide deposition of iron formations occurred. These sedimentary units reveal the transition into oxic oceans, passing by local and transitory euxinic conditions, especially in coastal shelves. Constraining the iron cycle and the biogeochemical processes occurring in present and past ferruginous basins helps answering some of the question regarding global oxygenation, the evolution of life and past climate changes. Therefore, Fe speciation and Fe isotopes in both Proterozoic and recent sedimentary records have been widely used to reconstruct past basin dynamics and redox conditions in the sediment–water interface. However, sedimentation and early diagenesis can alter paleoredox proxies and their primary climate signals. In this work, we disentangled alteration processes occurring at the redox front below the sediment–water interface of a ventilated deep-water lake (Lago Fagnano, Argentina/Chile). A sequential extraction protocol was applied to characterize two reactive Fe pools: Fe oxyhydroxides and reduced iron. Subsequently, Fe isotopes were constrained to determine the main processes mobilizing Fe. At the redox front, ferric minerals reach a δ56Fe value of − 1.3‰ resulting from oxidation of dissolved Fe likely following a Rayleigh distillation effect. Dissolved Fe is produced right below via Fe reduction, as shown by the low ferric Fe content. Our observations delineate a redox cycle and a redox horizon undergoing constant upward migration, initiated by regular sedimentation. However, during events of increased rapid sedimentation (e.g., seismites) this dynamic cycle is interrupted inducing full or partial preservation of the Fe-rich redox front. In such case, oxidation of dissolved Fe is interrupted and can be recycled in ferrous minerals, such as Fe monosulfides and amorphous phases with δ56Fe values down to − 1.7 ‰. These findings have significant implications for the recording of biogeochemical cycles in the geological past, the use of Fe isotopes in freshwater-lake sediments for paleoclimate studies, and the progress of our knowledge regarding the geochemistry of past oceans.

Details

show
hide
Language(s):
 Dates: 2024-04-29
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s10933-024-00316-0
GFZPOF: p4 T2 Ocean and Cryosphere
GFZPOFWEITERE: p4 T5 Future Landscapes
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Paleolimnology
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals289
Publisher: Springer Nature