English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The role of protolith composition in the formation of tin-enriched granitic melts: A modeling study using the example of the southwest China tin province

Liu, Y., Schmidt, C., Li, J., Wang, D., Yan, Q., Stammeier, J. A., Sieber, M. J. (2024): The role of protolith composition in the formation of tin-enriched granitic melts: A modeling study using the example of the southwest China tin province. - Ore Geology Reviews, 169, 106094.
https://doi.org/10.1016/j.oregeorev.2024.106094

Item is

Files

show Files
hide Files
:
5025997.pdf (Publisher version), 7MB
Name:
5025997.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Liu, Yongchao1, Author              
Schmidt, C.1, Author              
Li, Jiankang2, Author
Wang, Denghong2, Author
Yan, Qinggao2, Author
Stammeier, Jessica Alexandra3, Author              
Sieber, Melanie J.1, Author              
Affiliations:
13.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146036              
2External Organizations, ou_persistent22              
33.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Content

show
hide
Free keywords: Tin granite, Protolith composition, Pre-enrichment, Metasediment, Thermodynamic modeling, South China
 Abstract: Important features of Sn mineralization are the heterogeneous geographic distribution and frequent regional separation from W mineralization in spite some similarities of Sn and W behavior during magmatic processes. Major Sn and W mineralization is often spatially associated with peraluminous granites, which are derived from partial melting of metasediments. Several concepts have been suggested to explain those features, such as a weathering-related Sn-enriched source, Sn redistribution between melts and restite during protolith melting, and extensive fractional crystallization. We demonstrate the importance of protolith composition for the formation of Sn (and W) granites by using a comprehensive bulk-rock composition dataset from Precambrian metasediments of the South China Sn-W province and employing a thermodynamic modeling approach. We used four compositional proxies for phase equilibria calculations, which are the metasediments of the Mengdong, Sibao, Pingbian, and Shuangqiaoshan Groups. It is well documented that those Precambrian metasediments are important protoliths of Sn granites in South China. We present quantitative evaluation of the control of protolith composition in the generation of Sn-enriched granitic melts using South China as example, but our conclusions may also be applicable to worldwide Sn–enriched granites. Our results indicate that the protolith major-element geochemistry controls the anatectic reactions and melt productivity at specific melting conditions, and consequently the partitioning behavior of Sn. Further, pre-enrichment of Sn is crucial to the fertility of granitic melt and may be a prerequisite, particularly for the formation of giant Sn deposits. We propose that the heterogeneous distribution of favorable source rocks is one of the important factors that control the spatial distribution of major Sn (and W) districts in South China and other regions worldwide.

Details

show
hide
Language(s): eng - English
 Dates: 20242024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.oregeorev.2024.106094
GFZPOF: p4 T8 Georesources
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Ore Geology Reviews
Source Genre: Journal, SCI, Scopus, OA , oa ab 2022
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 169 Sequence Number: 106094 Start / End Page: - Identifier: ISSN: 0169-1368
ISSN: 1872-7360
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals372
Publisher: Elsevier