Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery

Berger, K., Hank, T., Halabuk, A., Rivera-Caicedo, J. P., Wocher, M., Mojses, M., Gerhátová, K., Tagliabue, G., Dolz, M. M., Venteo, A. B. P., Verrelst, J. (2021): Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery. - Remote Sensing, 13, 22, 4711.
https://doi.org/10.3390/rs13224711

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Berger, Katja1, Autor              
Hank, Tobias2, Autor
Halabuk, Andrej2, Autor
Rivera-Caicedo, Juan Pablo2, Autor
Wocher, Matthias2, Autor
Mojses, Matej2, Autor
Gerhátová, Katarina2, Autor
Tagliabue, Giulia2, Autor
Dolz, Miguel Morata2, Autor
Venteo, Ana Belen Pascual2, Autor
Verrelst, Jochem2, Autor
Affiliations:
10 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146023              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: PRISMA; CHIME; NPV; Gaussian process regression; hybrid retrieval; active learning; PCA; PROSAIL-PRO
 Zusammenfassung: Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R2) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2021-11-212021
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3390/rs13224711
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Remote Sensing
Genre der Quelle: Zeitschrift, SCI, Scopus, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 13 (22) Artikelnummer: 4711 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals426