ausblenden:
Schlagwörter:
-
Zusammenfassung:
Bedload transport is a natural process that strongly affects the Earth's surface system. An important component of quantifying bedload transport flux and establishing early warning systems is the identification of the onset of bedload motion. Bedload transport can be monitored with high temporal resolution using passive acoustic methods, for example, hydrophones. Yet, an efficient method for identifying the onset of bedload transport from long-term continuous acoustic data is still lacking. Benford's Law defines a probability distribution of the first-digit of data sets and has been used to identify anomalies. Here, we apply Benford's law to continuous acoustic recordings from Baiyang hydrometric station, a tributary of Liwu River, Taroko National Park, Taiwan at the frequency of 32 kHz from stationary hydrophones deployed for 3 years since 2019. We construct a workflow to parse sound combinations of bedload transportation and analyze them in the context of hydrometric sensing constraining the onset, and recession of bedload transport. We identified three separate sound classes in the data related to the noise produced by the motion of pebbles, water flow, and air. We identify two bedload transport events that lasted 17 and 45 hr, respectively, covering about 0.35% of the total recorded time. The workflow could be transferred to other different catchments, events, or data sets. Due to the influence of instrument and background noise on the regularity of the residuals of the first-digit, we recommend identifying the first-digit distribution of the background noise and ruling it out before implementing this workflow.