Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Derivation of biophysical variables from Earth observation data: validation and statistical measures

Berger [Richter], K., Atzberger, C., Hank, T. B., Mauser, W. (2012): Derivation of biophysical variables from Earth observation data: validation and statistical measures. - Journal of Applied Remote Sensing, 6, 1, 063557-1.
https://doi.org/10.1117/1.JRS.6.063557

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Berger [Richter], Katja1, Autor              
Atzberger, Clement2, Autor
Hank, Tobias B.2, Autor
Mauser, Wolfram2, Autor
Affiliations:
10 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146023              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Evaluation is an essential step of model development. However, there is a missing definition of appropriate validation strategies, needed to guarantee reproducibility and generalizability of modeling results. Also, there is a lack of a generally agreed set of 'optimal' statistical measure(s) to assess model accuracy. The objective of the present study is to provide for remote sensing practitioners (i.e., non-statisticians) guidance for model validation strategies and to propose an optimal set of statistical measures for the quantitative assessment of model performance in the context of vegetation biophysical variable retrieval from Earth observation (EO) data. For these purposes, main terms and concepts were reviewed. Then, validation strategies were tested on a polynomial regression model and discussed. Moreover, a literature review was carried out, summarizing the statistical measures used to evaluate model performances. Supported by some exemplary datasets, these measures were calculated and their meanings discussed in view of several model validation criteria. From the results, we recommend to further exploit cross-validation and bootstrapping strategies to guarantee the development/validation of reliable models. An 'optimal' statistic set is suggested, including root mean square error (RMSE), coefficient of determination (R2), slope and intercept of Theil-Sen regression, relative RMSE, and Nash-Sutcliffe efficiency index. A wide acceptance and use of these statistics should enable a better intercomparison of scientific results, urgently needed in times of increasing model development activities that are carried out with respect to upcoming EO missions.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 20122012
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1117/1.JRS.6.063557
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Applied Remote Sensing
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 6 (1) Artikelnummer: - Start- / Endseite: 063557-1 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals244