ausblenden:
Schlagwörter:
Tien Shan, Gravity field, Isostatic anomalies, Intracontinental subduction, Upper mantle
Zusammenfassung:
A new combined satellite-terrestrial model of the gravity field is used together with seismic data for construction of a density model of the lithosphere of the Central Tien Shan and for estimation of its isostatic balance. The Tien Shan is one of the most active intraplate orogens in the world, located about 1,500 km north of the convergence between Indian and Eurasian plate, and surrounded by stable Kazakh platform to the north and the Tarim block to the south. Although this area was extensively studied during recent decades, several principal problems, related to its structure and tectonics, remain unsolved up to now: (1) various geodynamic scenarios have been discussed so far to explain tectonic evolution, such as direct "crustal shortening," intracontinental subduction and some others, but no definite evidence for any of them has been found. (2) Still, it is not clear why Tien Shan grows so far from the plate boundary at the Himalayan collision zone. Gravity modeling can provide valuable constraints to resolve these questions. The results of this study show that: (1) there exists a very strong deflection of the Tien Shan lithosphere from isostatic equilibrium. At the same time, the patterns of the isostatic anomalies are very different in the Western and Central Tien Shan. The latter one is characterized by much stronger variations. The best fit of the modeling results is found for the model according to which the Tarim plate partially underthrusts the Central Tien Shan; (2) negative density anomalies in the upper mantle under the central block possibly relate to magmatic underplating during the initial stage of the tectonic evolution. Therefore, the weak lithosphere could be the factor that initiates mountain building far away from the collision zone. Alternatively, this might be a gap after detachment of the eclogised lower crust and lithospheric lid, which is filled with the hot asthenospheric material.