English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Manteldynamik, magmatische Prozesse und das Aufbrechen der Kontinente

Trumbull, R. B., Kloeve Keiding, J., Veksler, I., Romer, R. L. (2012): Manteldynamik, magmatische Prozesse und das Aufbrechen der Kontinente. - System Erde, 2, 2, 18-23.
https://doi.org/10.2312/GFZ.syserde.02.02.3

Item is

Files

show Files
hide Files
:
GFZ_syserde.02.02.3.pdf (Publisher version), 6MB
File Permalink:
-
Name:
GFZ_syserde.02.02.3.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Trumbull, Robert B.1, 2, Author              
Kloeve Keiding, Jakob1, 2, Author              
Veksler, Ilya1, 2, Author              
Romer, Rolf L.2, Author              
Affiliations:
1System Erde : GFZ Journal Vol. 2, Issue 2 (2012), System Erde : GFZ Journal 2012, Deutsches GeoForschungsZentrum, Potsdam, ou_96023              
24.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Content

show
hide
Free keywords: -
 Abstract: The separation of Africa and South America about 130 million years ago was accompanied by huge volumes of magma derived from the mantle. Erosion has removed many of the surficial lavas but dolerite dyke swarms beneath them are preserved. These dykes are under study to determine the composition of magmas, the age of magmatism, and the direction of extensional stress in the crust. Here, we compare two dolerite dyke swarms from the southern African margin that are separated by about 2000 km. The northern area is the Etendeka Province of NW Namibia with the Henties Bay-Outjo dyke swarm (HOD). The southern area, at the tip of Africa, hosts the False Bay dyke swarm. The dolerites from these two areas differ in compositional diversity and magmatic temperatures, both being higher in the north. Three magma types are distinguished in the northern area and only one in the south. Temperatures calculated from olivine-melt equilibrium show a north-south decrease by about 150 °C. Converted to mantle potential temperature and compared with global averages, the data indicate “normal” upper mantle temperatures in southern region like in the mid-ocean ridge systems (1380 °C), and mantle temperatures in the northern area (1520 °C) similar to hotspot islands like Hawaii and Iceland. We conclude that breakup-related magmatism in the south was related to extension and passive decompression of an upper mantle with normal temperature and composition. The Tristan mantle plume greatly enhanced magma production in the Etendeka Province but was not the cause of continental breakup.

Details

show
hide
Language(s): deu - German
 Dates: 20122012
 Publication Status: Finally published
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.2312/GFZ.syserde.02.02.3
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: System Erde
Source Genre: Journal, other, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 76 Volume / Issue: 2 (2) Sequence Number: 3 Start / End Page: 18 - 23 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals2_413