Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Teleseismic shear wave splitting measurements in noisy environments

Urheber*innen

Restivo,  A.
GEOFON, Deutsches GeoForschungsZentrum;

Helffrich,  G.
GEOFON, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Restivo, A., Helffrich, G. (1999): Teleseismic shear wave splitting measurements in noisy environments. - Geophysical Journal International, 137, 3, 821.
https://doi.org/10.1046/j.1365-246x.1999.00845.x


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2808982
Zusammenfassung
High noise levels hamper teleseismic shear wave splitting measurements, which bandpass filtering does not always help. To investigate how robust splitting measurements are to noise, we analysed a set of synthetic records with known splitting parameters and added fixed levels of noise. In the presence of weak anisotropy, single-waveform splitting measurements are unreliable when operating with noisy data sets. A practical rule in terms of S/N ratio and splitting delay time parameters is that splitting is confidently detectable at S/N > 8, regardless of the wave's original polarization orientation. However, for the evidence of weak anisotropy to be detectable and measurable at an S/N value of 4, the backazimuth separation of the phases from the fast polarization direction needs to be higher than 20°. Stacks of individual measurements consistently yield reliable results down to S/N values of 4. Applying stacking to data from DSB (Dublin, Ireland), the fast polarization direction φ and lag time δt are 58° and 0.95 s. This orientation reflects surface trends of deformation in the area, as found elsewhere in the UK. Our result thus reinforces the proposed model that the detected anisotropy in the British Isles originates from lithospheric coherent deformation preserved from the last main tectonic episode.