Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures

Urheber*innen

de Vries,  J.
External Organizations;

Jacobs,  M. H. G.
External Organizations;

van den Berg,  A. P.
External Organizations;

Wehber,  M.
External Organizations;

/persons/resource/lathe

Lathe,  Christian
CGS Centre for Geological Storage, Geoengineering Centres, GFZ Publication Database, Deutsches GeoForschungsZentrum;

McCammon,  C. A.
External Organizations;

Westrenen,  W.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Vries, J., Jacobs, M. H. G., van den Berg, A. P., Wehber, M., Lathe, C., McCammon, C. A., Westrenen, W. (2013): Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures. - Physics and Chemistry of Minerals, 40, 9, 691-703.
https://doi.org/10.1007/s00269-013-0605-5


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_328209
Zusammenfassung
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a ΔP standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3, K 0 = 74.4 ± 5.3 GPa, and dKdT=−0.032±0.005GPa K−1 , assuming K′0=10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1−x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.