English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The potential impact of ClOx radical complexes on polar stratospheric ozone loss processes

Authors

Vogel,  B.
External Organizations;

Feng,  W.
External Organizations;

/persons/resource/streibel

Streibel,  M.
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Müller,  R.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Vogel, B., Feng, W., Streibel, M., Müller, R. (2006): The potential impact of ClOx radical complexes on polar stratospheric ozone loss processes. - Atmospheric Chemistry and Physics, 6, 10, 3099-3114.
https://doi.org/10.5194/acp-6-3099-2006


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_331295
Abstract
The importance of radical-molecule complexes for atmospheric chemistry has been discussed in recent years. In particular, the existence of a ClO·O2 and ClOx water radical complexes like ClO·H2O, OClO·H2O, OClO·(H2O)2, and ClOO·H2O could play a role in enhancing the ClO dimer (Cl2O2) formation and therefore may constitute an important intermediate in polar stratospheric ozone loss cycles. Model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS) will be presented to study the role of radical complexes on polar stratospheric ozone loss processes. The model simulations are performed for the Arctic winter 2002/2003 at a level of 500 K potential temperature and the results are compared to observed ozone loss rates determined by the Match technique. Moreover, recently reported values for the equilibrium constant of the ClO dimer formation are used to restrict the number of possible model results caused by large uncertainties about radical complex chemistry. Our model simulations show that the potential impact of ClO·O2 on polar ozone loss processes is small (dO3/dt≪0.5 ppb/sunlight h) provided that the ClO·O2 complex is only weakly stable. Assuming that the binding energies of the ClOx water complexes are much higher than theoretically predicted an enhancement of the ozone loss rate by up to ≈0.5 ppb/sunlight h is simulated. Because it is unlikely that the ClOx water complexes are much more stable than predicted we conclude that these complexes have no impact on polar stratospheric ozone loss processes. Although large uncertainties about radical complex chemistry exist, our findings show that the potential impact of ClOx radical molecule complexes on polar stratospheric ozone loss processes is very small considering pure gas-phase chemistry. However the existence of ClOx radical-molecule complexes could possibly explain discrepancies for the equilibrium constant of the ClO dimer formation found between recent laboratory and stratospheric measurements.