English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation

Authors
/persons/resource/chuanbin

Zhu,  Chuanbin
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/pilz

Pilz,  M.
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/fcotton

Cotton,  Fabrice
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5003025.pdf
(Postprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhu, C., Pilz, M., Cotton, F. (2020): Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation. - Soil Dynamics and Earthquake Engineering, 139, 106301.
https://doi.org/10.1016/j.soildyn.2020.106301


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5003025
Abstract
Ground response analyses (GRA) model the vertical propagations of SH waves through flat-layered media (1DSH) and are widely carried out to evaluate local site effects in practice. Horizontal-to-vertical spectral ratio (HVSR) technique is a cost-effective approach to extract certain site-specific information, e.g., site fundamental frequency (f0), but HVSR values cannot be directly used to approximate the levels of S-wave amplifications. Motivated by the work of Kawase et al. (2019), we propose a procedure to correct earthquake HVSR amplitudes for direct amplification estimations. The empirical correction compensates HVSR by generic vertical amplification spectra categorized by the vertical fundamental frequency (f0v) via k-means clustering. In this investigation, we evaluate the effectiveness of the corrected HVSR in approximating observed linear amplifications in comparison with 1DSH modellings. We select a total of 90 KiK-net (Kiban Kyoshin network) surface-downhole sites which are found to have no velocity contrasts below their boreholes and thus of which surface-to-borehole spectral ratios (SBSRs) can be taken as their empirical transfer functions (ETFs). 1DSH-based theoretical transfer functions (TTFs) are computed in the linear domain considering uncertainties in VS profiles through randomizations. Five goodness-of-fit metrics are adopted to gauge the closeness between observed (ETF) and predicted (i.e., TTF and corrected HVSR) amplifications in both amplitude and spectral shape over frequencies from f0 to 25 Hz. We find that the empirical correction to HVSR is highly effective and achieves a “good match” in both spectral shape and amplitude at the majority of the 90 KiK-net sites, as opposed to less than one-third for the 1DSH modelling. In addition, the empirical correction does not require a velocity model, which GRAs require, and thus has great potentials in seismic hazard assessments.