English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Are OpenStreetMap building data useful for flood vulnerability modelling?

Authors
/persons/resource/mcerri

Cerri,  Marco
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mstein

Steinhausen,  Max
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kreib

Kreibich,  H.
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kschroet

Schröter,  Kai
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5005909.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Cerri, M., Steinhausen, M., Kreibich, H., Schröter, K. (2021): Are OpenStreetMap building data useful for flood vulnerability modelling? - Natural Hazards and Earth System Sciences (NHESS), 21, 2, 643-662.
https://doi.org/10.5194/nhess-21-643-2021


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5005909
Abstract
Flood risk modelling aims to quantify the probability of flooding and the resulting consequences for exposed elements. The assessment of flood damage is a core task that requires the description of complex flood damage processes including the influences of flooding intensity and vulnerability characteristics. Multi-variable modelling approaches are better suited for this purpose than simple stage–damage functions. However, multi-variable flood vulnerability models require detailed input data and often have problems in predicting damage for regions other than those for which they have been developed. A transfer of vulnerability models usually results in a drop of model predictive performance. Here we investigate the questions as to whether data from the open-data source OpenStreetMap is suitable to model flood vulnerability of residential buildings and whether the underlying standardized data model is helpful for transferring models across regions. We develop a new data set by calculating numerical spatial measures for residential-building footprints and combining these variables with an empirical data set of observed flood damage. From this data set random forest regression models are learned using regional subsets and are tested for predicting flood damage in other regions. This regional split-sample validation approach reveals that the predictive performance of models based on OpenStreetMap building geometry data is comparable to alternative multi-variable models, which use comprehensive and detailed information about preparedness, socio-economic status and other aspects of residential-building vulnerability. The transfer of these models for application in other regions should include a test of model performance using independent local flood data. Including numerical spatial measures based on OpenStreetMap building footprints reduces model prediction errors (MAE – mean absolute error – by 20 % and MSE – mean squared error – by 25 %) and increases the reliability of model predictions by a factor of 1.4 in terms of the hit rate when compared to a model that uses only water depth as a predictor. This applies also when the models are transferred to other regions which have not been used for model learning. Further, our results show that using numerical spatial measures derived from OpenStreetMap building footprints does not resolve all problems of model transfer. Still, we conclude that these variables are useful proxies for flood vulnerability modelling because these data are consistent (i.e. input variables and underlying data model have the same definition, format, units, etc.) and openly accessible and thus make it easier and more cost-effective to transfer vulnerability models to other regions.