Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Experimental investigation into the disturbance of the Sm-Nd isotopic system during metasomatic alteration of apatite


Li,  Xiao-Chun
External Organizations;


Harlov,  D. E.
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Zhou,  Mei-Fu
External Organizations;

Hu,  Hao
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available

Li, X.-C., Harlov, D. E., Zhou, M.-F., Hu, H. (2021 online): Experimental investigation into the disturbance of the Sm-Nd isotopic system during metasomatic alteration of apatite. - Geochimica et Cosmochimica Acta.

Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5008349
In order to understand the effect of fluid-induced alteration on the Sm-Nd isotope systematic in apatite, a series of fluid/apatite reaction experiments, which involve reacting the well-characterized Durango fluorapatite with CO2 ± CaCO3-, NaF- or HCl ± CaCl2-bearing solutions with a known 143Nd/144Nd ratio, were conducted at 800 or 600 °C at 200 MPa. In experiments involving CO2-H2O ± CaCO3, the fluorapatite grains did not react with the solution, such that the Sm-Nd isotopic system was undisturbed. In experiments involving NaF, the fluorapatite grains were partially to completely altered. During the alteration process, REE mobilization was retarded via the coupled substitution Na+ + REE3+ = 2Ca2+ due to the high activity of Na in the fluid. Because the REE were not mobilized, the 147Sm/144Nd ratios remained constant. However, the 143Nd/144Nd ratios were slightly altered due to small degrees of Nd isotopic exchange between the fluid and fluorapatite. In experiments involving HCl ± CaCl2, the fluorapatite grains were partially altered, and the REE were variably leached from the altered fluorapatite. Leaching of REE was accompanied by an increase in the 147Sm/144Nd ratio, which is related to the higher compatibility of Sm in the fluorapatite structure and the lower mobility of Sm in Cl-bearing fluids. Although the 147Sm/144Nd ratios were strongly affected, the 143Nd/144Nd ratios experienced only a small change, which is related to the slow rate of transport for Nd between reaction-front fluid and bulk fluid. In general, the experimental results indicate that fluid chemistry is the main factor controlling the response of the Sm-Nd isotopic system to fluid-induced alteration. The 147Sm/144Nd ratio of apatite can be highly modified, and in turn the Sm-Nd isotopic system is disturbed when the fluids are rich in ligands that are able to facilitate REE mobilization and fractionation. Therefore, a thorough evaluation of the fluid-rock history, along with the conjectured fluid chemistry, is necessary before using apatite Sm-Nd isotopes as geological indicators.