English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A square root information filter for multi-GNSS real-time precise clock estimation

Authors
/persons/resource/zuo

Zuo,  Xiang
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/jxinyuan

Jiang,  Xinyuan
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/panli

Li,  Pan
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/jgwang

Wang,  Jungang
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/maor

Ge,  Maorong
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/schuh

Schuh,  H.
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5009701.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zuo, X., Jiang, X., Li, P., Wang, J., Ge, M., Schuh, H. (2021): A square root information filter for multi-GNSS real-time precise clock estimation. - Satellite Navigation, 2, 28.
https://doi.org/10.1186/s43020-021-00060-0


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5009701
Abstract
Real-time satellite orbit and clock estimations are the prerequisite for Global Navigation Satellite System (GNSS) real-time precise positioning services. To meet the high-rate update requirement of satellite clock corrections, the computational efficiency is a key factor and a challenge due to the rapid development of multi-GNSS constellations. The Square Root Information Filter (SRIF) is widely used in real-time GNSS data processing thanks to its high numerical stability and computational efficiency. In real-time clock estimation, the outlier detection and elimination are critical to guarantee the precision and stability of the product but could be time-consuming. In this study, we developed a new quality control procedure including the three standard steps: i.e., detection, identification, and adaption, for real-time data processing of huge GNSS networks. Effort is made to improve the computational efficiency by optimizing the algorithm to provide only the essential information required in the processing, so that it can be applied in real-time and high-rate estimation of satellite clocks. The processing procedure is implemented in the PANDA (Positioning and Navigation Data Analyst) software package and evaluated in the operational generation of real-time GNSS orbit and clock products. We demonstrated that the new algorithm can efficiently eliminate outliers, and a clock precision of 0.06 ns, 0.24 ns, 0.06 ns, and 0.11 ns can be achieved for the GPS, GLONASS, Galileo, and BDS-2 IGSO/MEO satellites, respectively. The computation time per epoch is about 2 to 3 s depending on the number of existing outliers. Overall, the algorithm can satisfy the IGS real-time clock estimation in terms of both the computational efficiency and product quality.