Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

First-principles based study of magnetic states and high-pressure enthalpy landscape of manganese sulfide polymorphs

Urheber*innen
/persons/resource/chmeruk

Chmeruk,  Artem
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mari_nv

Núñez Valdez,  M.
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5010880.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chmeruk, A., Núñez Valdez, M. (2022): First-principles based study of magnetic states and high-pressure enthalpy landscape of manganese sulfide polymorphs. - Journal of Applied Physics, 131, 11, 115904.
https://doi.org/10.1063/5.0080499


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5010880
Zusammenfassung
Using first-principles calculations in combination with special quasirandom structure and occupation control matrix methods, we study the magnetic ordering and the effect of pressure on manganese sulfide polymorphs. At ambient conditions, MnS is commonly observed in paramagnetic rock-salt structure, but as temperature decreases at constant pressure it becomes antiferromagnetic. On the other hand, at room temperature MnS has shown to undergo structural transformations as pressure increases. Here, we show that our approach involving the ordering/disordering of the local magnetic moments in addition to the explicit control of the localization of the Mn d-electrons produces energy band gaps and local magnetic moments in excellent agreement with those observed experimentally, particularly for paramagnetic MnS. Finally, we focus on how MnS evolves under pressure and from its enthalpy landscape we identify at about 21 GPa, the structural transformation from rock-salt to orthorhombic MnP-type. This structural transformation resembles closely experimental results in which a new stable but unidentified MnS phase was previously reported.