Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Role of Defects in Fe(II)–Goethite Electron Transfer

Urheber*innen

Notini,  Luiza
External Organizations;

Latta,  Drew E.
External Organizations;

/persons/resource/neumanna

Neumann,  Anke
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Pearce,  Carolyn I.
External Organizations;

Sassi,  Michel
External Organizations;

N’Diaye,  Alpha T.
External Organizations;

Rosso,  Kevin M.
External Organizations;

Scherer,  Michelle M.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Notini, L., Latta, D. E., Neumann, A., Pearce, C. I., Sassi, M., N’Diaye, A. T., Rosso, K. M., Scherer, M. M. (2018): The Role of Defects in Fe(II)–Goethite Electron Transfer. - Environmental Science and Technology, 52, 5, 2751-2759.
https://doi.org/10.1021/acs.est.7b05772


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5013353
Zusammenfassung
Despite substantial experimental evidence for Fe(II)–Fe(III) oxide electron transfer, computational chemistry calculations suggest that oxidation of sorbed Fe(II) by goethite is kinetically inhibited on structurally perfect surfaces. We used a combination of 57Fe Mössbauer spectroscopy, synchrotron X-ray absorption and magnetic circular dichroism (XAS/XMCD) spectroscopies to investigate whether Fe(II)–goethite electron transfer is influenced by defects. Specifically, Fe L-edge and O K-edge XAS indicates that the outermost few Angstroms of goethite synthesized by low temperature Fe(III) hydrolysis is iron deficient relative to oxygen, suggesting the presence of defects from Fe vacancies. This nonstoichiometric goethite undergoes facile Fe(II)–Fe(III) oxide electron transfer, depositing additional goethite consistent with experimental precedent. Hydrothermal treatment of this goethite, however, appears to remove defects, decrease the amount of Fe(II) oxidation, and change the composition of the oxidation product. When hydrothermally treated goethite was ground, surface defect characteristics as well as the extent of electron transfer were largely restored. Our findings suggest that surface defects play a commanding role in Fe(II)–goethite redox interaction, as predicted by computational chemistry. Moreover, it suggests that, in the environment, the extent of this interaction will vary depending on diagenetic history, local redox conditions, as well as being subject to regeneration via seasonal fluctuations.