Privacy Policy Disclaimer
  Advanced SearchBrowse




Data Publication

Chemical (EPMA) and boron isotope (SIMS) analyses on tourmaline breccias from the Río Blanco-Los Bronces porphyry copper district, Chile


Hohf,  Michael
External Organizations;


Trumbull,  R.
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available

Hohf, M., Trumbull, R. (2022): Chemical (EPMA) and boron isotope (SIMS) analyses on tourmaline breccias from the Río Blanco-Los Bronces porphyry copper district, Chile.

Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5013558
Tourmaline-cemented magmatic-hydrothermal breccias are a major host to sulphide mineralization in the supergiant Río Blanco–Los Bronces (RB–LB) porphyry Cu-Mo district in central Chile. We made an extensive study of the chemical and boron isotopic composition of tourmaline from this district to shed light on the composition and origin of mineralizing fluids and to test the utility of tourmaline as an indicator mineral by comparing compositions from mineralized and barren breccias. Río Blanco-Los Bronces is a world-class porphyry-type Cu-Mo district of late Miocene age hosted in a granodioritic batholith and related porphyry intrusions in central Chile (33°9’ S latitude, 70°17’W longitude). The porphyry intrusions and related orebodies are distributed along a structurally-controlled NW-SE zone. Mineralization comprises quartz-sulfide veins, disseminated sulfide miner-alization in altered porphyry host rocks and disseminated sulfides in hydrothermal breccias. See Toro et al. (2012) for an overview of the geology, geochronology and mineralization in the district. Descriptions of the mineralized tourmaline breccias are given by Frikken et al. (2005) and Skewes et al. (2003). The data set provided here comprises in-situ chemical analyses of tourmaline by electron microprobe (EPMA) as well as in-situ boron-isotope analyses of tourmaline in the same samples by SIMS. Tourmaline was analysed in 12 samples including 8 from mineralized breccia bodies (Sur-Sur: 4, La Americana: 4), and 2 samples each from barren breccia and nearby granite-hosted tourmaline nodules in the Diamante area. We also give results of mass balance calculations testing the hypoth-esis of a magmatic-hydrothermal origin of the boron.