Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Measuring geocenter motion using LEO GPS tracking, with and without accelerometer

Urheber*innen

Kuang,  Da
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Desai,  Shailen
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Haines,  Bruce
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Wu,  Xiaoping
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kuang, D., Desai, S., Haines, B., Wu, X. (2023): Measuring geocenter motion using LEO GPS tracking, with and without accelerometer, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2089


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018728
Zusammenfassung
We present a method to measure geocenter motion in the terrestrial reference frame (TRF) defined by a global GPS orbit and clock product. Access to the geocenter is provided through precise orbit determination (POD) of Low Earth Orbiters (LEO) using onboard GPS tracking data. In our method, the geocenter location parameters are explicitly expressed in the observation equations for the LEO tracking data, while the GPS orbital position and clock parameters are held fixed to the product produced by the IGS Analysis Center at JPL. The geocenter location parameters are estimated on a daily basis and the resulting time series describes the motion of the Earth’s instantaneous center of mass sensed by the LEO satellites orbital motion in IGb14 frame defined by the GPS orbit and clock product. The key to the success of this method is the precise modeling of the perturbing forces on the LEOs. When good quality accelerometer measurements are available, such as for GRACE and GRACE-Follow-On missions, the estimated geocenter motion is robust. When the accelerometer measurements are not available, results from multiple LEOs in different orbital planes can be combined to average down the non-common part of systematic errors such as drag and solar radiation pressure force model errors. We present 19 years (2004-2022) of continuous geocenter motion measured using this method. Two types of solutions are compared and features observed in the time series are discussed.