Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Superfloe parameterization with physics constraints for data assimilation and uncertainty quantification of sea ice floes

Urheber*innen

Chen,  Nan
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Deng,  Quanling
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Stechmann,  Samuel
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chen, N., Deng, Q., Stechmann, S. (2023): Superfloe parameterization with physics constraints for data assimilation and uncertainty quantification of sea ice floes, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2035


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018801
Zusammenfassung
The discrete element method (DEM) provides a new modeling approach for describing sea ice dynamics. It exploits particle-based methods to characterize the physical quantities of each sea ice floe along its trajectory under Lagrangian coordinates. One major challenge in applying DEM models is the heavy computational cost when the number of floes becomes large. In this paper, an efficient Lagrangian parameterization algorithm is developed, which aims at reducing the computational cost of simulating the DEM models while preserving the key features of the sea ice. The new parameterization takes advantage of a small number of artificial ice floes, called the superfloes, to effectively approximate a considerable number of the floes, where the parameterization scheme satisfies several important physics constraints. The physics constraints guarantee the superfloe parameterized system will have short-term dynamical behavior similar to that of the full system. These constraints also allow the superfloe parameterized system to accurately quantify the long-range uncertainty, especially the non-Gaussian statistical features, of the full system. In addition, the superfloe parameterization facilitates a systematic noise inflation strategy that significantly advances an ensemble-based data assimilation algorithm for recovering the unobserved ocean field underneath the sea ice. Such a new noise inflation method avoids ad hoc tunings as in many traditional algorithms and is computationally extremely efficient. Numerical experiments based on an idealized DEM model with multiscale features illustrate the success of the superfloe parameterization in quantifying the uncertainty and assimilating both the sea ice and the associated ocean field.