Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Role of polar vortex and Brewer-Dobson Circulation projections uncertainties on the spread of ozone recovery

Urheber*innen

Benito-Barca,  Samuel
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Abalos,  Marta
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Calvo Fernandez,  Natalia
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Ayarzagüena,  Blanca
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

De la Camara,  Alvaro
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benito-Barca, S., Abalos, M., Calvo Fernandez, N., Ayarzagüena, B., De la Camara, A. (2023): Role of polar vortex and Brewer-Dobson Circulation projections uncertainties on the spread of ozone recovery, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2773


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5019110
Zusammenfassung
Stratospheric ozone is a key component of the climate system, playing an essential role in the radiative budget and protecting the Earth from harmful solar ultraviolet (UV) radiation. Past changes have had significant impacts on regional and global climate, so future ozone changes are also expected to have important effects on tropospheric and stratospheric climate. This work examines the long-term recovery trends in NH stratospheric ozone throughout the 21st century in the context of climate change using a set of chemistry-climate model simulations performed for the Chemistry Climate Model Initiative 1 and 2 (CCMI-1 and CCMI-2). While all simulations present a recovery of stratospheric ozone in the NH outside the tropics, there is a large spread in the rate of change, both among models and among ensemble members of individual models. We investigate to what extent this spread is attributed to uncertainties in the projected evolution of dynamical features, such as the strength of the polar vortex and the deep branch of the residual circulation.