English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Versatile near-Earth environment of Radiation Belts and ring current - 4D (VERB-4D) code

Authors
/persons/resource/himmel

Himmelsbach,  Julia
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/yshprits

SHPRITS,  YURI
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/haylis

Allison,  Hayley J.
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/bhaas

Haas,  Bernhard
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/wutzig

Wutzig,  Michael
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dedong

Wang,  D.
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/yixinhao

Hao,  Yixin
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Himmelsbach, J., SHPRITS, Y., Allison, H. J., Haas, B., Wutzig, M., Wang, D., Hao, Y. (2023): Versatile near-Earth environment of Radiation Belts and ring current - 4D (VERB-4D) code, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3016


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020399
Abstract
Ring current particles, which are heavily influenced by geomagnetic activity, excite plasmawaves (e.g., EMIC, chorus etc) and affect the terrestrial magnetospheric configuration, which modifies particle trajectories. During geomagnetic storms, specifically the recovery phase, the ring current becomes disturbed and decays via various loss processes (e.g., charge exchange, Coulomb collisions, and EMIC wave scattering). These disturbances in the ring current contribute significantly to the development of the Dst index. Since the ring current plays a crucial role in magnetospheric dynamics through its spatial and temporal evolution, understanding how it impacts the Dst index remains an ongoing topic of research.In this study, we present the first simulation results of the ring current using the Versatile near-Earth environment of Radiation Belts and ring current - 4D (VERB-4D) code, peviously known as the Versatile Electron Radiation Belt - 4D code. Our simulations are compared to the Van Allen Probes HOPE and RBSPICE during a geomagnetic storm on March 17, 2013. We study the evolution of the MLT-resolved and average Dst index during the storm‘s recovery phase while examining the relative contributions of charge exchange, Coulomb drag, and radial diffusion.