English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spatio-temporal variations of seismic coupling along a transform fault: the western North Anatolian Fault Zone

Authors
/persons/resource/amandine

Amemoutou,  Amandine
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/patricia

Martinez Garzon,  P.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/vdurand

Durand,  Virginie
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kwiatek

Kwiatek,  G.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/bohnhoff

Bohnhoff,  M.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dre

Dresen,  G.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5022619.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Amemoutou, A., Martinez Garzon, P., Durand, V., Kwiatek, G., Bohnhoff, M., Dresen, G. (2023): Spatio-temporal variations of seismic coupling along a transform fault: the western North Anatolian Fault Zone. - Geophysical Journal International, 235, 2, 1982-1995.
https://doi.org/10.1093/gji/ggad341


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5022619
Abstract
The Main Marmara Fault (MMF) forms a major segment of the North Anatolian Fault Zone (NAFZ) in northwestern Türkiye. The MMF represents a seismic gap with currently high seismic hazard and associated risk for the Istanbul metropolitan area. Here we estimate the seismic coupling defined as the ratio of the seismic strain rate to the tectonic strain rate, for the MMF and adjacent NAFZ segments. This ratio indicates the fraction of total strain accumulated with time that is released seismically. We compare the results of seismic strain rates and coupling estimated from earthquakes included in historical and instrumental catalogs, which allows us to identify fault segments that represent a considerable seismic threat during the current seismic cycle. We find that along the main fault traces hosting the large events, seismic strain rates from the historical catalog are of the same order as the tectonic strain rates. In contrast, coupling estimates based on seismic data from the instrumental catalog covering also off-fault areas, are up to 100 times smaller, highlighting that most of the seismic energy is released in large earthquakes with recurrence times longer than the time covered by the instrumental catalog. Within the Sea of Marmara, a significant portion (48 per cent) of shear strain from the instrumental catalog is currently being accommodated by seismic deformation. Significant variations of the seismic coupling are observed before and after the 1999 M > 7 Izmit earthquake, highlighting the different contribution of aseismic slip over different portions of the seismic cycle. A comparison of the temporal evolution of the 1999 Izmit and Düzce postseismic deformation with seismic strain rates shows that the largest seismic strain rates coincide with the largest post-seismic deformation.