English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Boron geochemistry reveals the evolution of Dead Sea brines

Authors
/persons/resource/jurikova

Jurikova,  Hana
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/s_ring

Ring,  Simon J.
3.3 Earth Surface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/henehan

Henehan,  Michael
3.3 Earth Surface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/inaneu

Neugebauer,  I.
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/birgit

Schröder [Plessen],  Birgit
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/danielam

Müller,  Daniela
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mschwab

Schwab,  M. J.
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/tjalling

Tjallingii,  Rik
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/brau

Brauer,  A.
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/blanchet

Blanchet,  Cécile L.
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5022750.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation
Abstract
Well-known for their geological and natural singularity, the Dead Sea brines evolved from a marine ingression of the Mediterranean during the Pliocene. Dead Sea brines are currently almost ten times more concentrated than seawater and have a unique chemical composition with high boron isotope values (δ11Bbrine=∼57). However, little is known on how these values were attained and their underlaying driving processes. Here we use boron isotopes (δ11B) combined with B/Ca and B/Li of lacustrine authigenic aragonites from the deep basin drill-core ICDP 5017-1, and Ein Gedi and Masada profiles to reconstruct past brine conditions. Comparing reconstructed δ11Bbrinefrom two key periods of contrasting hydro-climatic regimes we find that the brines of the late Holocene Dead Sea were enriched in 11B (δ11Bbrine=∼60) relative to its glacial precursor Lake Lisan (∼57). With the aid of boron cycle modelling, we quantify the main boron fluxes in the basin. We show that the post-glacial δ11Bbrineenrichment is best explained by overall reduction of freshwater inflow to the lake and coeval increase in 10B sink through boron co-precipitation in evaporitic deposits and boron loss in atmospheric water vapour, consistent with the onset of warmer and drier climate in the Eastern Mediterranean during the Holocene. On geological time scales, adsorption of 10B on clastic sediments has acted as an important 10B sink and can explain the evolution of the high δ11Bbrinevalues.