Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Optimal well distance selection for Aquifer Thermal Energy Storage (ATES) under geological uncertainty

Urheber*innen
/persons/resource/elenape

Petrova,  Elena
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kranz

Kranz,  S.
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/norden

Norden,  Ben
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/cacace

Cacace,  Mauro
4.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/saadat

Saadat,  Ali
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/bloech

Blöcher,  G.
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Petrova, E., Kranz, S., Norden, B., Cacace, M., Saadat, A., Blöcher, G. (2024): Optimal well distance selection for Aquifer Thermal Energy Storage (ATES) under geological uncertainty - Proceedings, ECCOMAS CONGRESS 2024 - 9th European Congress on Computational Methods in Applied Sciences and Engineering (Lisbon, Portugal 2024).


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5026877
Zusammenfassung
Aquifer Thermal Energy Storage (ATES) systems have attracted global attention for their substantial storage capacity and cost-effectiveness. Positioned as an environmentally sustainable solution, ATES harnesses excessive heat resources in urbanized areas to ensure geothermal district heat and cooling. The design and long-term forecasting of ATES is limited by the scarcity of spatiotemporal data, leading to inherent parametric uncertainty. This study addresses a critical aspect of ATES optimization by focusing on the design of optimal well distancing and injection/extraction regimes under geological uncertainty. Key performance indicators, such as the heat recovery factor and heat storage capacity, are crucial from the geoenergy perspective. Essential parameters for ATES prediction are besides the hydraulic and thermal reservoir properties the operation temperatures and the geothermal fluid injection/extraction regime. In this research, we present a stochastic optimization workflow that considers geologically reasonable parameters as prior uncertainties, with well distancing and injection/extraction regimes as optimization parameters. The objective functions involve heat recovery and thermal efficiency. The overarching goal is to create a comprehensive and reliable tool for the optimal design of ATES systems under uncertainty. The proposed methodology is applied to a numerical 3D thermal-hydraulic model of a planned ATES system in Berlin. Through this work, we aim to contribute to the advancement of optimal well distance, ensuring robustness and adaptability in the face of geological uncertainties