Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Pyrite analysis enhanced by dimensionality reduction: investigating texture, trace elements, and sulphur isotope signatures in the Kibali gold district, DRC

Urheber*innen

Waku,  Yann Mpaka
External Organizations;

Von der Heyden,  Björn
External Organizations;

Hurst,  Gary
External Organizations;

Lawrence,  David M.
External Organizations;

Mwandale,  Etienne
External Organizations;

/persons/resource/sglynn

Glynn,  S.
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Waku, Y. M., Von der Heyden, B., Hurst, G., Lawrence, D. M., Mwandale, E., Glynn, S. (2023): Pyrite analysis enhanced by dimensionality reduction: investigating texture, trace elements, and sulphur isotope signatures in the Kibali gold district, DRC - Abstracts, 17th SGA Biennial Meeting "Mineral Resources in a Changing World" (Zürich, Switzerland 2023).


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5027955
Zusammenfassung
Pyrite is the most abundant sulphide mineral in the various ore zones hosted within the world-class Kibali gold district. Because of its affinity for trace elements and gold incorporation, pyrite mineral chemistry is increasingly being used as a powerful tool to assess the characteristics of ore formation. This study presents a novel dimensionality reduction-based approach for pyrite classification. This approach incorporates the strengths of both Uniform Manifold Approximation and Projection (UMAP) and Principal Component Analysis (PCA) with k-Means clustering to analyse the large trace element datasets derived from in-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) including sulphur isotope from Secondary Ion Mass Spectrometry (SIMS). The results suggest that 8 clusters may be defined from the pyrite mineral chemistry signatures. This clustering served to direct a refined classification relative to the initial textural analysis. We anticipate that our approach may be adopted by other workers who wish to disentangle complex pyrite growth and gold mineralisation histories in a variety of geological contexts.