Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Physics‐Based Forecasts of Eruptive Vent Locations at Calderas

Urheber*innen
/persons/resource/lorenzo

Mantiloni,  Lorenzo
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Submitting Corresponding Author, Deutsches GeoForschungsZentrum;

/persons/resource/rivalta

Rivalta,  E.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Anderson,  K. R.
External Organizations;

Davis,  T.
External Organizations;

Passarelli,  L.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5028103.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mantiloni, L., Rivalta, E., Anderson, K. R., Davis, T., Passarelli, L. (2024): Physics‐Based Forecasts of Eruptive Vent Locations at Calderas. - Journal of Geophysical Research: Solid Earth, 129, e2023JB028409.
https://doi.org/10.1029/2023JB028409


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5028103
Zusammenfassung
Constraining stresses in the Earth's crust in volcanic regions is critical for understanding many mechanical processes related to eruptive activity. Dike pathways, in particular, are shaped by the orientation of principal stress axes. Therefore, accurate models of dike trajectories and future vent locations rely on accurate estimates of stresses in the subsurface. This work presents a framework for probabilistic constraint of the stress state of calderas by combining three-dimensional physics-based dike pathway models with observed past vent locations using a Monte Carlo approach. The retrieved stress state is then used to produce probability maps of future vent opening across a caldera. We test our stress inversion and vent forecast approach on synthetic scenarios, and find it successful depending on the distribution of the available vents and the complexity of the volcano's structural history. We explore the potential and limitations of the approach, show how its performance is sensitive to the assumptions in the models and available prior information, and discuss how it may be applied to real calderas.