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IODP Expeditions 309 and 312 Drill an Intact Section of 
Upper Oceanic Basement into Gabbros

by Jeffrey C. Alt, Damon A.H. Teagle, Susumu Umino, Sumio Miyashita, Neil R. Banerjee,  
Douglas S. Wilson, the IODP Expeditions �09 and �1� Scientists,  

and the ODP Leg �06 Scientific Partydoi:10.��0�/iodp.sd.�.01.�007

Summary

The Integrated Ocean Drilling Program’s (IODP) 
Expeditions 309 and 312 successfully completed the first 
sampling of an intact section of upper oceanic crust, through 
lavas and the sheeted dikes into the uppermost gabbros. 
Hole 1256D, which was initiated on the Ocean Drilling 
Program’s (ODP) Leg 206, now penetrates to >1500 mbsf and 
>1250 m sub-basement. The first gabbroic rocks were encoun-
tered at 1407 mbsf. Below this, the hole penetrates ~100 m 
into a complex zone of fractionated gabbros intruded into 
contact metamorphosed dikes. 

Deep Drilling of the Ocean Basementeep Drilling of the Ocean BasementDrilling of the Ocean Basementrilling of the Ocean BasementOcean Basementcean BasementBasementasement

Drilling a complete in situ section of ocean crust has been 
an unfulfilled ambition of Earth scientists since the inception 
of ocean drilling that followed the audaciously ambitious 
Project MoHole, which was targeted to sample the first order, which was targeted to sample the first order targeted to sample the first order 
seismic boundary named the Mohorovičić discontinuity 
(‘Moho’; see Bascom, 1961; Greenberg, 1974). The principal 
emphasis of Project MoHole was to understand the nature of 
the oceanic crust and the underlying uppermost mantle 
thought to be separated by the Moho 
at roughly 6 km depth below the 
ocean basins. Unfortunately, many 
of the key questions regarding the 
formation and evolution of the 
oceanic crust remain unanswered 
despite a further forty years offorty years of years of 
research; moreover, our sampling of; moreover, our sampling of our sampling of 
the ocean crust remains extremely 
cursory (see compilations in Teagle 
et al., 2004; Wilson et al., 2003). 
Although offset drilling strategies, 
where deeper parts of the ocean 
crust are sampled by drilling in 
tectonic windows, have had notable 
success (e.g., Hess Deep, ODP Leg 
147; Southwest Indian Ridge, ODP 
Leg 176; Mid-Atlantic Ridge, 
Ildefonse et al., 2006), composite 
sections of the ocean crust are not 
substitutes for long continuous drill 
holes into intact crust far from 
fracture zones. Before the recent 

success of drilling at Site 1256, only Hole 504B, located in 
6.9-Ma old crust on the southern flank of the intermediate 
spreading rate Costa Rica Rift, had sampled through the 
lava-dike transition (Alt et al., 1996). However, the sheeted 
dike-gabbro transition had never been drilled, even though it 
is critical to deciphering crustal accretion processes at mid-
ocean ridges. 

The IODP Expeditions 309 and 312 therefore tackled aand 312 therefore tackled a 312 therefore tackled a 
major unfulfilled goal of ocean drilling—namely the sampling 
of a complete section from lavas, through the dikes, and into 
gabbros. This was accomplished by drilling Hole 1256D in 
crust that formed at a superfast spreading rate at the East 
Pacific Rise ~15-My ago (Fig. 1). This approach exploits the 
apparent inverse relationship between the depth of axial low 
velocity zones, hypothesized to be magma chambers, and 
spreading rate (Fig. 2). Drilling took place on three scientific 
ocean drilling cruises: ODP Leg 206 (Wilson et al., 2003): ODP Leg 206 (Wilson et al., 2003) ODP Leg 206 (Wilson et al., 2003) 
and IODP Expeditions 309 and 312 (IODP Expedition 309 
Scientists, 2005; IODP Expedition 309/312 Scientists, 2006;309/312 Scientists, 2006;312 Scientists, 2006; 
Teagle et al., 2006; Wilson et al., 2006). IODP Expedition 312. IODP Expedition 312 IODP Expedition 312 
was the last cruise of IODP Phase I and the final scientific 
drilling voyage of JOIDES Resolution before major refitting 
and renaming. The successful accomplishment of the 

Figure 1. Age map of the Cocos plate and East Pacific Rise with isochrons at 5-My intervals, converted from 
magnetic anomaly identifications according to timescale of Cande and Kent (1995). The wide spacing of 
10–20 Ma isochrons to the south reflects the extremely fast (200–220 mm yr-1) full spreading rate. The locations of 
deep drill holes into the oceanic crust at Sites 1256 and 504 are shown.
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evidence from core or from geophysical wireline logs for 
significant tilting of the dikes. This is consistent with seismic 
reflection images of sub-horizontal reflectors in the lower 
extrusive rocks that are continuous for several kilometers 
across the site (Hallenborg et al., 2003).

There is a stepwise increase in alteration grade downward 
from lavas into dikes, with low temperature phases (<150°C; 
phyllosilicates, iron oxyhydroxides) in the lavas giving way 
to dikes partially altered to chlorite and other greenschist 
minerals (at temperatures greater than ~250°C; Fig. 3).greater than ~250°C; Fig. 3).~250°C; Fig. 3). 
Within the dikes the alteration intensity and grade increase 
downward, with actinolite more abundant than chlorite below 
1300 mbsf and with hornblende present below 1350 mbsf.with hornblende present below 1350 mbsf.hornblende present below 1350 mbsf.. 
These results indicate temperatures approaching ~400°C.indicate temperatures approaching ~400°C.e temperatures approaching ~400°C. temperatures approaching ~400°C. 
The dikes have significantly lower porosity (mostly 0.5�–2�)�–2�)–2�) 
and higher P-wave velocities and thermal conductivity than 
the lavas, and porosity decreases while P-wave velocitywhile P-wave velocity P-wave velocity 
increases with depth in the dikes. In the lower ~60 m of the 
sheeted dikes (1348 to 1407 mbsf), basalts are partially to 
completely recrystallized to distinctive granoblastic textures 
resulting from contact metamorphism by underlying 
gabbroic intrusions (Fig. 4). 

Gabbro and trondhjemite dikes intrude into sheeted dikes 
at 1407 mbsf, marking the top of the plutonic complex. Two, marking the top of the plutonic complex. Two marking the top of the plutonic complex. Two 
major bodies of gabbro were penetrated beneath this contact, 
with the 52-m-thick upper gabbro separated from the 
24-m-thick lower gabbro by a 24-m screen of granoblastic 

longstanding scientific ocean drilling ambition of coring to 
gabbros in situ is a fitting finale to the JOIDES ResolutionResolution’s 
achievements and to Phase I of IODP. 

Goals of IODP Expeditions �09 and �1�

Deep basement drilling at Site 1256 had four principal 
scientific objectives:

Test the prediction that gabbros representing thethat gabbros representing the 
crystallized melt lens should be encountered at a depth of 
900–1300 m subbasement at Site 1256 from the correlationrom the correlation 
of spreading rate with decreasing depth to the axial melt 
lens
Determine the lithology and structure of the upper oceanic 
crust for the superfast spreading end-member
Correlate and calibrate remote geophysical seismic and 
magnetic imaging of the structure of the crust with basic 
geological observations
Investigate the interactions between magmatic and alter-
ation processes, including the relationships between 
extrusive volcanic rocks, the feeder sheeted dikes, and 
the underlying gabbroic rocks. 

Highlights of Deep Drilling in Hole 1��6D

ODP Leg 206 installed a reentry cone supported by 
20-inch casing with a large-diameter (16-inch) casing that a large-diameter (16-inch) casing that large-diameter (16-inch) casing that-inch) casing thatinch) casing thatthat 
sealed off the 250-m sediment blanket and cemented 19 med off the 250-m sediment blanket and cemented 19 m off the 250-m sediment blanket and cemented 19 m 
into the basement. Using the large-diameter casing left openthe basement. Using the large-diameter casing left openbasement. Using the large-diameter casing left openUsing the large-diameter casing left openhe large-diameter casing left openleft open open 
the possibility that additional casing strings could be installed 
if future expeditions decided to isolate eroded portions of the future expeditions decided to isolate eroded portions of thed to isolate eroded portions of the to isolate eroded portions of the 
hole. Leg 206 then deepened the hole through 502 m of 
massive lavas and sheet flows with moderate to high recovery 
(48�; Wilson et al., 2003). IODP Expeditions 309 and 312 
deepened Hole 1256D by 755.1 m to 1507.1 mbsf (Fig. 3). The 
uppermost basement comprises a ~100-m-thick sequence of 
lava dominated by a single flow up to 75 m thick, requiring at m thick, requiring atm thick, requiring at 
least that much seafloor relief to pool the lava. On modernat much seafloor relief to pool the lava. On modern much seafloor relief to pool the lava. On modern 
fast spreading ridges, such topography does not normally, such topography does not normally such topography does not normally 
develop until 5–10 km from the axis. The lavas immediately 
below include sheet and massive flows and minor pillow 
flows. Sub-vertical, elongate, flow-top fractures filled with 
quenched glass and hyaloclastite in these lavas indicate flow 
lobe inflation requiring eruption onto a sub-horizontal 
surface off-axis (Umino et al., 2000). Thus, we estimate a 
total thickness of 284 m for off-axis lavas, close to the284 m for off-axis lavas, close to theoff-axis lavas, close to the 
assumed thickness. Sheet flows and massive lavas thatthat 
erupted at the ridge axis make up the remaining extrusive 
section down to 1004 mbsf, before a lithologic transition is 
marked by sub-vertical intrusive contacts and mineralized 
breccias. Below 1061 mbsf, subvertical intrusive contacts are 
numerous, indicating the start of a relatively thin, indicating the start of a relatively thin indicating the start of a relatively thin 
(~350-m-thick) sheeted dike complex that is dominated by~350-m-thick) sheeted dike complex that is dominated by) sheeted dike complex that is dominated by sheeted dike complex that is dominated by 
massive basalts. Some basalts have doleritic textures, and 
many are cut by sub-vertical dikes with common strongly 
brecciated and mineralized chilled margins. There is no 
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Figure 2. Depth to axial low-velocity zone plotted against spreading rate 
(modified from Carbotte et al. (1997). Depth versus spreading rate predictions 
from two models of Phipps Morgan and Chen (1993) are shown, extrapolated 
subjectively to 200 mm y-1 (dashed lines). Penetration to date in Holes 504B 
and 1256D is shown by solid vertical lines, with the depth at which gabbros 
were intersected indicated by the red box. Following core descriptions, a 
thickness of ~300 m of off-axis lavas is shown for Hole 1256D and assumed 
for Hole 504B. EPR = East Pacific Rise, JdF = Juan de Fuca Ridge, Lau = 
Valu Fa Ridge in Lau Basin, CRR = Costa Rica Rift. 
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resorbed, stoped dike clasts are entrained within both the 
upper and lower margins of the lower gabbro (Fig. 4G). The 
lowermost rock recovered from Hole 1256D is a highly 
altered actinolite-bearing basaltic dike that lacks grano-
blastic textures, and is therefore interpreted to be a late dike therefore interpreted to be a late dike interpreted to be a late dike 
that post-dates the intrusion of the lower gabbro. 

Contrary to expectation, porosity increases and P-wave 
velocities decrease stepwise downward from lowermost 
dikes into the uppermost gabbro at Hole 1256D, as a result ofthe uppermost gabbro at Hole 1256D, as a result ofuppermost gabbro at Hole 1256D, as a result of 
the contact metamorphism of the granoblastic dikes and the 
strong hydrothermal alteration of the uppermost gabbros 

(Fig. 3). Porosity and velocity 
then increase downhole in the 
gabbro but are still <6.5 km s-1. 

Flows and dikes from Hole 
1256D show a wide range of 
magmatic fractionation, from 
fairly primitive to evolved (Figs. 3 
and 5). Shallower than 600 mbsf, 
magma compositions are bimodal, 
with relatively evolved thick flows 
and more primitive thin flows. 
Primitive and evolved composi-
tions are closely juxtaposed 
within the dikes, as would be 
expected for vertically intruded 
magmas. For most major elements 
and many trace elements, the 
range of concentrations in flows 
and dikes is similar to that 
observed for the northern East 
Pacific Rise (EPR, e.g., Fig. 5). A 
few incompatible elements,, 
including Na and Zr, have lowerZr, have lowerr, have lower, have lower have lower 
concentrations than observed for 
the modern EPR lavas, but the 
general overlap of compositions 
indicates similar processes at the 
superfast spreading ridge that 
formed Site 1256 and the modern 
EPR. The gabbro compositions 
span a range similar to the flows 
and dikes, but are on average 
more primitive. Even though less 
fractionated, the average gabbro 
composition is evolved relative to 
candidates for primary magma in 
equilibrium with mantle olivine. 
Therefore, the residue removed, the residue removed the residue removed 
from primary magma to produce 
the observed gabbro and basalt 
compositions must be deeper than 
the uppermost gabbros penetrated 
in Hole 1256D.

dikes (Fig. 4). The upper gabbro comprises gabbros, oxide 
gabbros, quartz-rich oxide diorites and small trondhjemite 
dikelets. These rocks are moderately to highly altered by 
hydrothermal fluids to actinolitic hornblende, secondary 
plagioclase, epidote, chlorite, prehnite, and laumontite. The, and laumontite. The and laumontite. The 
intensity of hydrothermal alteration increases with grain 
size and proximity to intrusive boundaries. 

The lower gabbro comprises gabbro, oxide gabbro, and 
subordinate orthopyroxene-bearing gabbro and trondhjemite-bearing gabbro and trondhjemitebearing gabbro and trondhjemite 
that are similarly altered. It also has clear intrusive contacts. It also has clear intrusive contacts It also has clear intrusive contactsIt also has clear intrusive contacts has clear intrusive contacts 
with the overlying granoblastic dike screen. Partially 

Figure 3. Summary lithostratigraphic column of the basement drilled to date at Site 1256 showing recovery, major 
lithologies, downcore index alteration, mineral distribution (thick lines = abundant; thin lines = rare), downcore 
distribution of Mg-number (where Mg# = 100 ° - Mg/ (Mg + (0.9 x Fe) ) atomic ratio), and seismic velocity measured 
on discrete samples, wireline tools, and seismic refraction (from Wilson et al., 2006).
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Conclusions from Site 1��6

The ocean crust is subdivided into 
three seismic layers: layer one comprisesseismic layers: layer one comprisesone comprises comprises 
sediments and has low velocity; layer 
two has low velocity and a high velocity has low velocity and a high velocity 
gradient; layer three is characterized bythree is characterized by is characterized by 
high velocity (at least 6.7 km s-1) and low 
gradient. There is a widespread 
perception that layer three is equivalentthree is equivalent is equivalent 
to gabbro, even though Hole 504B has 
penetrated that layer but not gabbro (Altthat layer but not gabbro (Altlayer but not gabbro (Alt 
et al., 1996). Seismic velocities of 
discrete shipboard samples and from 
wireline tools indicate velocities for 
gabbro in Hole 1256D are <6.5 km s-1 
and do not fit models for layer three.three.. 
Further drilling in Hole 1256D, however, 
could recover samples to characterize 
the transition between seismic layers. 

Site 1256 has a relatively thick lava 
sequence and a thin dike sequence. The 
thick lava sequence with many massive 
flows is interpreted as a consequence of 
short vertical transport distance from 
the shallow magma chamber. There is 
little evidence for tilting (at most a few 
degrees) in Hole 1256D and no evidence 
for significant faulting. The ponded flow 
at Site 1256, however, indicates that 
faults of ~50–100 m offset must exist in 
superfast crust to provide the necessary 
relief for ponding of the flow.

When intruded as a magma, the 
upper gabbro in Hole 1256D would likelylikely 
have had depth and impedance 
properties consistent with the geophysi-
cally imaged melt lenses at mid-ocean 
ridges. However, this gabbro body is 
chilled against the underlying dike 
screen, which precludes segregating awhich precludes segregating aprecludes segregating aes segregating a segregating a 
crystal residue that subsides to form the 
lower crust as in the gabbro glacier 
model. Thus, sills or other bodies, sills or other bodies sills or other bodies 
containing cumulate materials must 
exist deeper in the crust or underlying 
mantle, but could be as shallow as just 
below the present maximum depth of 
Hole 1256D.

The ~800-m-thick lava sequence is 
generally less hydrothermally altered 
than other basement sites (Wilson et al., 
2003), and the distributions of secondary, and the distributions of secondary and the distributions of secondary 

Figure 4. [A] Schematic lithostratigraphic section of the plutonic complex from the lower portion of Hole 
1256D with representative photographs of key samples. The distribution of rock types is expanded 
proportionately in zones of incomplete recovery. Felsic plutonic rocks include quartz-rich oxide diorite 
and trondjhemite. [B] Photomicrograph of a dike completely recrystallized to a granoblastic association 
of equant secondary plagioclase, clinopyroxene, magnetite, and ilmenite. Some granoblastic dikes have 
minor orthopyroxene. [C] The dike-gabbro boundary! Medium-grained oxide gabbro is intruded into 
granoblastically recrystallized dike along an irregular moderately dipping contact. The gabbro is strongly 
hydrothermally altered. [D] Quartz-rich oxide diorite strongly altered to actinolitic hornblende, secondary 
plagioclase, epidote, and chlorite. Epidote occurs in ~5-mm clots in the finer grained leucocratic portions 
of the rock. [E] Disseminated oxide gabbro with patchy texture and cm-scale dark ophitically intergrown 
clinopyroxene and plagioclase patches separated by irregular, more highly altered leucocratic zones. 
[F] Medium-grained strongly hydrothermally altered gabbro. The sample is cut by several chlorite and 
actinolite veins with light gray halos. Plagioclase is replaced by secondary plagioclase and clinopyroxene 
by amphibole. [G] Clast of partially resorbed dike within gabbro. (photos from Wilson et al.).
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minerals indicate a structural control of alteration rather 
than simply decreasing seawater influence downward. There 
is a stepwise increase in alteration temperatures downhole, 
from ~100°C in the lavas to ~250°C in the uppermost dikes. 
Aside from the granoblastic contact metamorphic assem-
blages in the basal dikes, hydrothermal mineralogy and 
inferred alteration temperatures of the lower dikes in Hole 
1256D are generally similar to those in the lower dikes of 
Hole 504B (up to ~400°C). The much thinner 
dike section at Site 1256 than at Site 504 (~350 
vs. ~1000 m), however, indicates a much steeper 
hydrothermal temperature gradient at Site 1256 
(~0.5°C m-1 vs. 0.16°C m-1 in 504B). 

Epidosites (equigranular(equigranularequigranular epidote-quartz- 
titanite rocks) delineate zones of upwelling delineate zones of upwelling 
black smoker-type fluids around the dike-
gabbro boundary in ophiolites. Although 
epidote is common within and below the 
transition zone in Hole 1256D (Fig. 3), epidosites 
were not encountered. Anhydrite precipitation 
must play a critical, but so far poorly under-
stood, role in oceanic hydrothermal circulation. 
Anhydrite in Hole 1256D (Fig. 3) is more 
abundant than in Hole 504B, but it is still presentit is still presentstill present 
in much lower quantities than predicted by 
models of hydrothermal circulation.

Technical Challenges

Even coring basement to more typical depths 
of a few hundred meters can run into technical 
problems, so coring to more than 1 km 

subbasement and through particularly hard dike formations 
presented challenges. Figure 6 shows drilling progress 
versus time at Site 1256. The first challenge (the flat portion 
of the depth vs. time line at the top of Hole 1256D in Fig. 6) 
was the installation of the large-diameter (20-inch) casing 
through sediment, then the drilling out of a 21-inch hole in 
basement below the 20-inch casing in order to accept the 
16-inch basement casing. This required the use of a bi-center 
reamer, which has an 18-inch pass-through diameter that 
allows this hardware to fit through the 20-inch casing. DuringDuring 
drilling, the actual diameter of the cut hole is 21 inches. This 
was the first time such a device was used in scientific ocean 
drilling. 

At ~900 mbsf during Leg 309 (Fig. 6), the driller noted a 
loss of pump pressure, so the drill string was pulled. A, so the drill string was pulled. A so the drill string was pulled. Aso the drill string was pulled. A the drill string was pulled. A 
horizontal gash was discovered that had nearly severed thewas discovered that had nearly severed thehad nearly severed the 
bit sub (Fig. 7). A second torsional failure of the drill string 
occurred in the 5-inch pipe above the bit sub. Such a failure Such a failureSuch a failure 
of the bit sub-assembly had not been witnessed before in the 
shipboard memory of scientific ocean drilling, and the rapid 
diagnosis and response of the Transocean operations team 
certainly averted a costly and time-consuming major 
equipment loss in Hole 1256D.     

Coring in the very hard recrystallized lower dikes 
proceeded slowly, and at 1372.8 mbsf with generally good 
drilling conditions, the fifth coring bit of IODP Expedition 
312 failed (Figs. 6 and cover picture). Cleaning out the metal 
debris from the bottom of the hole required four fishing 
round trips (two with a fishing magnet and two with a mill) 
before coring could be confidently resumed. Despite these 

Figure 5. FeOT (Total Fe expressed as FeO) vs. MgO for the basement at 
Site 1256, compared with analyses of northern EPR. Dashed lines show 
constant Mg number. Possible primary mantle melt compositions should 
have Mg number of 70–78 and MgO of 9–14 wt. %. All flows and dikes and 
most gabbros are too evolved to be candidates for primary magmas (from 
Wilson et al., 2006). 
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technical challenges, the major operational goal of the 
expeditions, coring into gabbro, was successfully achieved. 

Goals of Future Drilling at Site 1��6

Although the major objective of penetrating into gabbro 
was achieved, critical scientific questions remain to be 
answered. These include the following: 1) Does the lower the following: 1) Does the lower: 1) Does the lower 
crust form by the recrystallization and subsidence of a high 
level magma chamber (“gabbro glacier”), or by crustal, or by crustal or by crustalby crustalcrustal 
accretion from intrusion of sills throughout the lower crust��from intrusion of sills throughout the lower crust�� intrusion of sills throughout the lower crust�� 
2) Is the plutonic crust cooled by conduction or hydrothermal 
circulation�� 3) What is the geological nature of layer threethree 
and the layer two/three boundary at Site 1256�� 4) What istwo/three boundary at Site 1256�� 4) What is boundary at Site 1256�� 4) What is 
the magnetic contribution of the lower crust to marine 
magnetic anomalies�� Hole 1256D is poised at a depth where 
samples that would conclusively address these questions 
could be obtained, possibly with only a few hundred more 
meters of drilling. What is important is that the hole is clearWhat is important is that the hole is clearmportant is that the hole is clear is that the hole is clear the hole is clear 
of debris and open to its full depth. Increased rates of 
penetration (1.2 m h-1) and core recovery (>35�) in the 
gabbros indicate that a return to Hole 1256D could deepen 
the hole at least a further 500 m into plutonic rocks, past the 
present transition from dikes to gabbro, and into a region of 
solely gabbroic rocks.

The IODP Expedition �09 and �1� 
Scientists and ODP Leg �06 Scientific 
Party

J.C. Alt b,f, D.A.H. Teagle a,d,h, S. Umino d,f, S. Miyashita b, 
N.R. Banerjee c,f, D.S. Wilson a,g,h, G.D. Acton e, R. Anma h, 
S.R. Barr f, A. Belghoul g, J. Carlut h, D.M. Christie h, R.M. 
Coggon f,h, K.M. Cooper f,C. Cordier g, L. Crispini f,g, S.R. 
Durand g, F. Einaudi f,g, L. Galli g,h, Y. Gao g, J. Geldmacher g, 
L.A. Gilbert g, N.W. Hayman h,E. Herrero-Bervera g, N. 
Hirano h, S. Holter g, S. Ingle h, S. Jiang f, U. Kalberkamp f, M. 

Kerneklian f, J. Koepke h, Ch. Laverne f,g,h, H.L. Lledo 
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