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Abstract Submarine permafrost degradation has been invoked as a cause for recent observations
of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf.
Sediment drilled 52m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen
sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment
were low (mean 20μM) but higher in the underlying ice-bonded submarine permafrost (mean 380μM). In
contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5mM) than in
the underlying submarine permafrost (mean 0.1mM). Using deduced permafrost degradation rates, we
calculate potential mean methane efflux from degrading permafrost of 120mgm�2 yr�1 at this site.
However, a drop of methane concentrations from 190μM to 19μM and a concomitant increase of methane
δ13C from �63‰ to �35‰ directly above the ice-bonded permafrost suggest that methane is effectively
oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane
ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost
as their source.

1. Submarine Permafrost on the East Siberian Shelf

Greenhouse gas exchanges between the Earth’s atmosphere, the land, and the ocean are being quantified by
ongoing research [McGuire et al., 2009]. One poorly quantified stock is associated with submarine permafrost
on the arctic continental shelf. Submarine permafrost formation and its subsequent warming and thawing
result from the inundation of terrestrial permafrost during the Holocene marine transgression and/or
coastal retreat since the Last Glacial Maximum. Permafrost may have three distinct roles mitigating
greenhouse gas fluxes in this context: (1) it withholds carbon, by freezing it, from cycling in the global
carbon cycle [Grosse et al., 2011]; (2) it acts as a cap on the upward diffusion of biogenic and/or
thermogenic gas [Ruppel, 2011]; and (3) cold ground can create conditions whereby gas hydrate may be
stable at shallower depths than in the marine environment [O’Connor et al., 2010]. Submarine permafrost
thaw has thus been invoked as a mechanism for increasing methane efflux from the Siberian shelf seabed
to the water column and the atmosphere [Nicolsky et al., 2012; Shakhova et al., 2010]. Underlying
assumptions are made that warming of shallow coastal waters has accelerated permafrost thaw and that
water columns are short enough to permit methane to reach the ocean-atmosphere interface.

Warming of submarine permafrost increases microbial activity and may destabilize gas hydrates, if present.
Thawing of permafrost decreases its ice content and increases sediment permeability which can result in
accelerated transport of methane. Methane in the sediment and water column may be thermogenic or
biogenic in origin and may have been present in dissolved or gas phases in frozen ground or in gas
hydrate form prior to mobilization [Dallimore and Collett, 1995]. Based on the position of methane
associated with permafrost [Grosse et al., 2011], we differentiate between subpermafrost and
intrapermafrost methane. Modeling of permafrost thaw suggests that associated rates of gas hydrate
dissociation may increase exponentially [Frederick and Buffett, 2014], although the effects of latent heat of
dissociation and the position of hydrate deposits relative to the permafrost play an important role [Taylor
et al., 2004]. Recent observations of high methane concentrations in the water column and atmosphere in
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the Laptev and East Siberian Seas, and observations of methane bubble plumes, are probably associated with
pathways for gas flow through the sediment column, which may be created by permafrost thawing
[Shakhova et al., 2014]. Major knowledge gaps exist especially in the polar region when it comes to
constraining the amount of methane stored in the sediments, its current and potential emission rates into
the water column and atmosphere, and the processes that regulate methane production and release from
shelf sediments and the ocean [Ruppel, 2014]. Due to high sulfate concentrations in seawater, the
predominant terminal step of anaerobic oxidation of organic matter in marine sediments is microbial sulfate
reduction and not methanogenesis [Jørgensen, 1982]. The anaerobic oxidation of methane with sulfate as
terminal electron acceptor is globally important in mitigating methane fluxes from the seabed [Knittel and
Boetius, 2009, and references therein; Bowles et al., 2014]. This process is associated with the sulfate-methane
transition zone and in most cases is restricted to shallow (centimeter to meter scale) sediment depths where
sulfate has not been depleted by organic matter degradation through sulfate reduction.

Data on the distribution, thickness, and thermal conditions of submarine permafrost across the East Siberian
Arctic shelf are sparse. Current maps of submarine permafrost distribution are based on modeling of
permafrost development over previous glacial-interglacial cycles [Nicolsky et al., 2012; Romanovskii and
Hubberten, 2001; Zhigarev, 1997]. Modeling suggests that permafrost is distributed continuously across the
shallow Laptev shelf; this permafrost did not thaw completely during the last glacial-interglacial
transgression, except along active fault and rift zones with high geothermal heat flux or beneath large
persistent water bodies [Nicolsky et al., 2012]. Recent results centered on the New Siberian Islands suggest that
a more complicated glacial history than used in these models may yield more variable submarine permafrost
distribution [Niessen et al., 2013]. In their review of available bottom water temperatures and salinity,
Dmitrenko et al. [2011a] show recent bottom water warming during the summer months (June–September)
close to the coast (<10m water depth) by less than 2.1°C since around 1985. Such warming may change the
thermal regime of submarine permafrost in the Laptev and East Siberian Seas. In the few locations where it
has been observed, submarine permafrost temperature is usually around �1°C in coastal waters, close to the
limit required to maintain ice-bonded permafrost under submarine conditions [Grigoriev, 2008].

We hypothesize that submarine permafrost contains methane and that thawing of this permafrost releases
methane from the shelf into the water column. Our objective is to characterize methane concentrations in
submarine permafrost and to estimate rates of thaw and methane mobilization from degrading
submarine permafrost.

2. Regional Setting

The Laptev, East Siberian, and Chukchi Seas together comprise most of the arctic shelf area and more than
80% of the potential submarine permafrost in the Arctic (Figure 1a). In this region, mean modern coastal
erosion rates lie in the range of 1–2m/yr [Lantuit et al., 2012], result in the creation of about 10 km2 of
submarine permafrost annually [Grigoriev, 2008], and may be subject to recent acceleration due to warmer
summers and reduced sea ice duration [Günther et al., 2015]. Coastal retreat erodes surface deposits
belonging to late Pleistocene Ice Complex and Holocene thermokarst deposits of eastern Siberia
[Schirrmeister et al., 2011a, 2011b], transporting this organic-rich unit into the marine realm and exposing
the underlying Pleistocene alluvial sands to submarine conditions. Similar sandy deposits of alluvial-fluvial
origin, based on stratigraphic position, grain-size distribution, and composition, are found in the western
Laptev Sea [Winterfeld et al., 2011], Lena Delta [Schirrmeister et al., 2003, 2011c; Wetterich et al., 2008], and
the central Laptev Sea [Grosse et al., 2007; Kunitsky, 1989; Slagoda, 2004]. Sandy deposits of alluvial origin
underlying the Ice Complex are recorded east of Buor Khaya Peninsula from coastal exposures at Vankina
Bay [Katasonov and Pudov, 1972; Zhigarev, 1998], the Dmitry Laptev Strait [Grigoriev, 1966; Konishchev and
Kolesnikov, 1981; Tumskoy, 2012], and on the New Siberian Islands [Andreev et al., 2009; Fartyshev, 1993]
(Figure 1b). These deposits are similarly characterized by their deposition under subaerial conditions
(terrestrial permafrost), massive cryostructure (pore ice), lithostratigraphic position (underlying the Ice
Complex unit), and silty sand grain size. Organic carbon content of the sediment generally does not
exceed 1–2wt %, which is substantially lower than values characteristic for the overlying deposits
composed of Ice Complex (mean total organic carbon (TOC) 3.2wt %) and Holocene thermokarst (mean
TOC 6.2wt %) deposits [Strauss et al., 2013]. Where the overlying Ice Complex prevents Pleistocene sands
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from denudation, their upper extent in the Laptev Sea region lies between 10m below sea level [Kunitsky,
1989], 5 to 12m above sea level (asl) in the western Laptev Sea [Schirrmeister et al., 2008], and up to about
16 to 21m asl in the Lena Delta [Morgenstern et al., 2013]. Laptev and East Siberian Sea records of
submarine sediment temperature and sediment characteristics are limited to boreholes less than 100m
deep located close to shore (in less than 10m water depth) [Grigoriev, 2008; Overduin et al., 2007;
Winterfeld et al., 2011]. Nicolsky et al. [2012] model higher geothermal heat flux and modern seabed
temperatures (mean observed temperatures from 1999 to 2009), showing the development of an open
talik (an area free of ice-bonded permafrost) beneath central Buor Khaya Bay in the central Laptev Sea.
These results suggest that Buor Khaya Bay is a region with “warm” submarine permafrost that is
undergoing degradation and sensitive to environmental changes.

3. Methods

Sediment drilling was conducted just offshore of the eastern coast of Buor Khaya Bay in the central Laptev
Sea (71°25′20.3″N, 132°05′05.3″E; Figure 1c), southeast of the Lena Delta, in April–May 2012 [Günther et al.,
2013a]. Following measurements similar to Overduin et al. [2012], a geophysical site survey was carried out
in 2011 [Wetterich et al., 2011]. Based on this reconnaissance field work, we were assured of encountering
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Figure 1. (a) The Laptev Sea (circumpolar perspective map) and potential submarine permafrost extent (striped area, based on Brown et al. [2002]) are shown.
(b) Described locations of Pleistocene alluvial sands: (1) western Laptev Sea [Winterfeld et al., 2011], (2) Lena Delta [Schirrmeister et al., 2003, 2011a, 2011c;Wetterich
et al., 2008], (3) Muostakh Island [Kunitsky, 1989; Slagoda, 2004], (4) Vankina Bay[Katasonov and Pudov, 1972; Zhigarev, 1998], (5) Dmitry Laptev Strait [Grigoriev,
1966; Konishchev and Kolesnikov, 1981; Tumskoy, 2012], and (6) New Siberian Islands [Andreev et al., 2009; Fartyshev, 1993]. (c) Panoramic view of the drilling site (pin),
close to the western shore of the Buor Khaya Peninsula, combining bathymetry with 1m isobaths from digitized sea charts and topography of a SPOT-5 digital
elevation model.
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ice-bonded permafrost undergoing degradation at the drill site. Casing was drilled through the sea ice into
the seabed, allowing dry drilling using a rotary drill with 4m casing with diameters between 7 and 12 cm
(URB-4T, Vorovskii Factory for Drilling Equipment, Ekaterinburg, Russia). Frozen cores were ejected from
the core barrel using compressed air when cold ambient temperatures led to freezing between core and
barrel. Unfrozen core sections were immediately frozen at temperatures of less than �20°C, so that the
outer surface of the core was effectively sealed. All sections were described, packed, catalogued, and
transported in a frozen state. The cores were further sectioned, cleaned, photographed, and described
with respect to color, organic inclusions, as well as ice and sediment structures after equilibration to �12°C
in a climate chamber. The cryostructure of the sediment was described following French and Shur [2010].

Borehole temperature was measured using a 40m Geoprecision thermistor string following a one-point
calibration in deionized ice water. Temperature was recorded at 15min intervals in the borehole for 4 days
following drilling, and only temperatures with standard deviations from the mean of less than 0.05°C for
the period of record are reported. Temperatures were interpolated linearly to depths at which sediment
was sampled to provide values for methane solubility calculations following Yamamoto et al. [1976].

Freeze-dried sediment samples were homogenized and split for sedimentological analyses. Hydrogen
peroxide was used to remove organic matter, and grain size was analyzed by a Coulter LS 200 laser
particle size analyzer. Total organic carbon (TOC) of the bulk sediment was determined using an
Elementar Vario EL III. Where sufficient TOC was present, stable carbon isotope ratios (δ13C-TOC) were
measured after removal of carbonates with 10% HCl in Ag cups with a Finnigan Delta S mass
spectrometer coupled to a FLASH element analyzer and a ConFlo III system. Accuracy of the
measurements was determined by parallel analysis of internal and international standard reference
material (CaCO3 12%; NCSDC 73311[GSD-1], China National Center for Iron and Steel, Beijing, China;
Marine Sediment, High Purity Standards, Charleston SC, USA; SOIL, LECO Corporation St. Joseph MI, USA;
IVA33802150, IVA99994, IVA99995, IVA99996, IVA Analysetechnik, Meerbusch, Germany). The analyses
were accurate to ±0.2‰, and values are expressed relative to VPDB (Vienna Peedee belemnite).

The volume and weight of frozen and freeze-dried subsamples were determined for bulk and dry density and
total volumetric water content (ice and water). After thawing, pore water was sampled using Rhizons™ with
an effective pore size of 0.1μm. Pore water salinity was measured using a WTW MultiLab 540 electrical
conductivity meter with a TetraConTM 325 cell referenced to 20°C. Salinities are reported without units,
based on the practical salinity scale. Sulfate concentrations (in millimolar, mM) were determined using a
KOH eluent and a latex particle separation column on a Dionex DX-320 ion chromatographer. The
dissolved organic carbon (DOC) concentration in the sediment pore water was measured as nonpurgeable
organic carbon via catalytic combustion at 680°C using a Shimadzu TOC-VCPH instrument on samples
treated with 20μL of 30% suprapure hydrochloric acid. Stable water isotopes (δD and δ18O) were analyzed
following Meyer et al. [2000] on equilibrated samples using a Finnigan MAT Delta S mass spectrometer.
Values are reported as per mille difference from the Vienna standard mean ocean water. Standard
deviations were better than 0.5‰ for δD and 0.1‰ for δ18O.

Frozen subsamples were taken from the core using ice screws at 80 depths between 2 and 47.5m below
seafloor (bsf ). They were immediately immersed in a saturated NaCl solution to drive gases out
of solution and capped with a septum for later determination of methane and carbon dioxide
concentrations and the stable carbon isotope composition of the methane (δ13C-CH4). Methane and
carbon dioxide concentrations in the headspace were measured with an Agilent GC 7890 equipped with
a Ni catalyst to reduce carbon dioxide to methane, a flame ionization detector and a Porapak-Q column.
Helium served as carrier gas. The amount of gas in the vials was calculated from headspace
concentrations, gas pressure and solubility, and the volume of liquid in the bottles. Methane and carbon
dioxide concentrations are reported relative to sediment pore water volume, regardless of whether
present as ice or water, based on calculated total sediment water content.

The δ13C-CH4 values were determined with a Finnigan Delta Plus isotopic ratio mass spectrometer equipped
with a PreCon and a GC/C III interface [Brand, 1995]. The precision of the measurement was generally better
than ±0.5‰. Measured values were corrected with internal (�43.8‰) and external (National Institute of
Standards, USA, RM8561; �73.27‰) methane standards that were both measured after a maximum of 10
analyses. All stable carbon isotope values are expressed relative to VPDB.
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Data sets for statistical analysis were tested for normal distribution using the Shapiro-Wilk test. Due to
nonnormal data distribution, a Man-Whitney rank sum test was performed to compare selected data sets
and Spearman’s rank correlation coefficients for correlation analysis using IBM SPSS 18.

4. Results

Drilling from a 2m thick sea ice cover, 35m of core were recovered between 2 and 48m bsf with a recovery
rate of 78.4%. The borehole was located approximately 750m from the modern coastline in 4m deep
water. Ice-bonded sediment was encountered at 24.75m bsf, with 24.7m of overlying unfrozen sediment.
The sharp boundary between unfrozen and frozen sediments was recovered within one core section.
Borehole temperatures ranged between �1.0 and �0.5°C and between 6 and 36m bsf, with temperatures
higher than �0.8°C in the overlying unfrozen sediment and between �1.0 and �0.8°C in the frozen
sediment (Figure 2).

The sediment had amean dry bulk density of 1.7± 0.7 g cm�3 and total organic carbon (TOC) contents less than
3.1wt % (mean: 0.5 ± 0.8wt %, n=37), with most values below the detection limit of 0.1wt % (Figure 2).
Isolated, numerous layers up to several centimeters thick consisting of woody detritus up to 3 cm in
diameter were found throughout the core, in which organic content probably locally exceeded measured
values. Below 24.75m bsf, ice was almost entirely present as pore ice in massive cryostructures, with
occasional isolated microlens-like cryostructures (thin ice veins less than 1mm thick).

Figure 2. Sediment characteristics, from left to right: in situ temperature, wet bulk density, total organic carbon (TOC) content, particle size distribution (upper axis)
and means (lower axis), and cryolithology. Sea ice thickness and seawater depth are shown at the top of the right-hand graph; the depth of the ice-bonded
permafrost table (IBPT) is indicated on the right.
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Figure 3. Photos of selected core sections, 20 cm wide and 5 cm high, oriented with the downcore direction to the left.
(a) Unfrozen, midgrained sand, weakly bedded, single coarse wood remains, and organic layers<2mm thick (fourth unit).
The following images show ice-bonded sediment: (b) midgrained sand, microlens-like cryostructure, and organic remains,
including approximately 2 cm diameter woody stem at 25.3m (third unit); (c) microlens-like cryostructure, wooden
detritus at 29.8m and below 25.9m, and midgrained sand with gravel inclusions around 25.95m; black section is a break
in the core (third unit); (d) microlens-like to massive cryostructure and midgrained sand (third unit); (e) microlens-like
cryostructure, wooden detritus from 26.09 to 27.25m inclined at up to 16°, and midgrained sand (third unit); (f) fine-grained
sand, bedded plant detritus layers up to 1mm thick, and with a massive cryostructure (third unit); (g) midgrained sand,
without bedding, no organic material visible, and massive cryostructure; and (h) bedded, fine-grained sand, massive
cryostructure, plant detritus, and wood remains bedded in layers inclined at up to 20° (first unit).
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The lowermost first unit (41.10–47.55m bsf; Figure 2) consisted of alternations of partly bedded grey
(silty), medium- and coarse-grained sands with organic spots, plant detritus, and occasional layers of
wood remains (Figure 3). The cryostructure was massive. The second unit (33.85–40.10m bsf ) was
characterized by partly bedded grey (brown) sandy silt and medium- and coarse-grained sands
with organic spots and plant remains and microlens-like and massive cryostructures. The third unit
(18.60–32.80m bsf ) was composed of cross- and horizontal-bedded grey silty fine-grained sand layers
and of nonbedded medium- and coarse-grained sands with plant and wood remains. The cryostructure
was dominantly microlens-like. The boundary between the unfrozen and ice-bonded segments marked
by the ice-bonded permafrost table (IBPT) at 24.75m bsf did not exhibit changes in sediment
characteristics and is therefore not assumed to have been a geological boundary. The IBPT was clearly
defined by changes in (a) the presence/absence of ice, (b) pore water salinity and related changes in
pore water chemical and isotopic composition, and (c) methane concentrations and δ13C-CH4

signatures (described below in Figures 2 and 4). The unfrozen fourth unit (12.15–18.1m bsf ) was
an alternation of horizontal-bedded grey silt, bedded and nonbedded medium- and coarse-grained
sands with single dark organic plant detritus and single wood fragments. Further up, the fifth unit
(8.25–12.00m bsf ) was composed of layers of nonbedded fine-, medium-, and coarse-grained sands
with some pebbles (up to 2 cm in diameter) and coarse wood fragments. The uppermost sixth unit
(2.00–5.35m bsf ) was composed of partly bedded grey silty fine-grained sand that contains thin dark
layers of plant detritus and wood fragments.

Mean volumetric total water contents in the sediment were 0.4 ± 0.1 (Figure 4). Mean pore water salinity
was 13.5 ± 1.6 in the unfrozen and 0.4 (range: 0–0.9) in the ice-bonded sediment and varied between

Figure 4. Pore water characteristics, from left to right: volumetric water content, pore water salinity, sulfate, and dissolved organic carbon concentrations ([SO4
2�
(aq)]:

upper axis and DOC: lower axis, respectively) and water stable isotope ratios (δ18O: upper axis and δD: lower axis) as a function of depth below seafloor (mbsf).
The classification into permafrost segments (I, II, and III) is based on sediment cryolithology, pore water chemistry, and inferred permafrost dynamics. The two graphs
on the right-hand side show methane concentrations ([CH4]) and δ13C ratios in the methane (δ13C-CH4: upper axis) and sediment total organic carbon (δ13C-TOC:
lower axis).
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<0.1 and 17.4, from fresh to brackish water.
Sulfate concentration profiles in the unfrozen
layers suggested varying degrees of marine
influence with a mean sulfate concentration of
2.5 ± 1.5mM (Figure 4). At the thaw front,
sulfate concentration values decreased by 2
orders of magnitude over a depth range
of about 60 cm. In the frozen layers, mean
sulfate concentrations were 0.1 mM (range:
0–0.25mM) in the bulk pore water after thawing.
In the frozen sediment, most of this sulfate
probably exists in water remaining unfrozen at
the interfaces between pore ice and sediment
grains. Local concentrations of sulfate could
therefore be higher, depending on the degree
to which pore water is present as ice. Dissolved
organic carbon (DOC) concentrations ranged from
20 to 240mgL�1, with a mean of 53±39mgL�1.
Pore water stable isotope signatures also
changed at the IBPT, from δD greater than
�158‰ in the overlying unfrozen sediment
(δ18O: �20.0 to �16.1‰) to less than �158‰
in the ice-bonded sediment (δ18O: �20.3 to
�19.3‰) (Figure 4). The δ13C-TOC values for
the sediment organic matter ranged between
�28.5‰ and �24.5‰ (mean �26.3 ± 0.8‰, for
33 samples with TOC> 0.2 wt %; Figure 4).

Methane concentrations and stable carbon
isotope signatures of methane significantly differed
between the overlying unfrozen sediment layers
above 24.75m bsf and the ice-bonded layers
below (p< 0.01; Figure 4). Methane concentrations
in the overlying unfrozen sediment were generally
lower (1.6 to 137.2μM; mean: 17.1 ± 24.9μM)
than in the frozen layers (30 to 1169μM; mean:
380.6 ± 354.9 μM). Carbon dioxide concentrations
were not significantly different in the overlying
unfrozen sediment (0.2 to 49.4 mM; mean:
10.1 mM, n = 22) and in the frozen sediment
(1.2 to 17.7 mM; mean: 5.0mM, n = 19). Stable
carbon isotope values of methane were higher
in the overlying unfrozen sediment (�66.5‰
to �29.8‰; mean: �36.9 ± 9.3‰) than below
24.75m bsf (�71.0‰ to �53.0‰; mean: �62.4
± 6.5‰). Methane concentrations were negatively
correlated to sulfate concentrations (Spearman’s
ρ=�0.676, p< 0.001, n=80; Figure 5a) and
methane carbon isotope signatures (ρ=�0.897,

p< 0.001, n=60; Figure 5b). A significant correlation between methane concentrations and DOC
concentrations was found only in the frozen layers (ρ=0.625, p< 0.001, n=43; Figure 5c) but not in
unfrozen ones (ρ=0.172, p=0.310, n=37). Methane concentrations were less than 10% of saturation at the
observed total pore water content and its salinity, temperature, and pressure (based on hydrostatic
pressure) throughout the core.

Figure 5. Scatterplots ofmethane concentration and (a) sulfate
concentration, (b) δ13C ratio of methane, and (c) dissolved
organic carbon (DOC). The upper graphs show data for the
entire core; the lower graph shows only the frozen portion of
the core.
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5. Discussion
5.1. Permafrost Dynamics

Inundation of terrestrial permafrost usually leads to its eventual degradation, especially when the overlying
water reaches depths exceeding the annual sea ice thickness and when the mean annual sea bottom water
temperatures between the freezing point of seawater and peak summer temperatures warm the permafrost
from above [Osterkamp, 2001]. Not only increased heat transfer to the sediment results in degradation of
permafrost: advective and diffusive penetration of salt from saline bottom water (8.9 to 31.5‰ in the Buor
Khaya Bay, according to Charkin et al. [2011]) lowers the freezing temperature of the interstitial pore water
of the permafrost. Both processes lead to permafrost thaw, i.e., degradation. The recovered submarine
sediment can be classified into three segments (Figure 4): (I) a lower, frozen portion of terrestrial origin
(24.75 to 48m bsf), overlain by (II) terrestrial deposits that have thawed under marine influence, overlain
by (III) marine sediments reworked by wave and sea ice action near the seabed. The boundaries between
segments are not clearly reflected in the sediment stratigraphy. The boundary between segments II and III
probably lies around 6m bsf, above which higher variability in sediment TOC and in pore water stable
isotope ratios and salinity suggest changes in sediment source and the composition of overlying seawater.
Heim et al. [2014] describe increased turbidity following storms in the study region (Buor Khaya Bay,
Laptev Sea) at locations with water less than around 10m deep, supporting this observation.

At the site drilled in this study, the sediment cryostratigraphy and fresh pore water with light stable water
isotope ratios in the lower ice-bonded segment I of the core indicate deposition under cold, terrestrial
conditions that led to freezing of the ground from the surface. According to the granulometric results and
sediment structures, partly bedded silty fine- to coarse-grained sands with plant detritus and wood
fragment layers were most likely formed in an alluvial environment under changing accumulation
conditions (e.g., meandering or braided river floodplains). Pore water is comparatively saline (10–17) from
the seabed down to the position of the freeze/thaw transition, which suggests that the transport of
seawater through the overlying unfrozen sediment to the thaw front is dominantly convective rather than
diffusive [Harrison and Osterkamp, 1982; Chuvilin et al., 2013] and that seawater is not limited at the
freezing front. Such convection may be driven by density and temperature differences between seawater
at the sediment-water interface and freshwater from the thaw front [Hutter and Straughan, 1999]. The
greater sulfate concentration variability in segment III than in segment II is not reflected in the overall
salinity of pore water but follows the stable isotope ratios closely, with the exception of the sample closest
to the seafloor (at 2m bsf). This suggests that seafloor dynamics rather than postdepositional microbial
activity in the sediment have led to the observed variations. Benthic water in this region changes from
brackish seawater to relatively fresh fluvial water depending on pycnocline depth [Dmitrenko et al., 2011b],
which varies on seasonal and shorter time scales. In addition, sediment deposition on the seafloor, its
resuspension by waves during storm events in the fall, and disturbance by ice in the spring can all affect
profiles of sediment composition and pore water chemistry in segment III. Core recovery in segment III
was less than 50% (Figure 1), so that more detailed analysis of the relative roles of depositional and
postdepositional changes to pore water chemistry is difficult.

Currently, onshore ground temperatures on the Buor Khaya Peninsula are about�10°C at 20m depth [Günther
et al., 2013a], and permafrost extends down to around 600m below the ground surface [Romanovskii et al.,
2004]. The upper, unfrozen segment (II) of the core probably thawed following flooding. As a result,
sediment throughout the core has warmed from �10°C to temperatures near the freezing point. The Buor
Khaya Peninsula is about 85% covered by thermokarst depressions [Günther et al., 2013b], and we cannot
exclude the possibility that the borehole site was affected by Holocene thermokarst or thermokarst lake
development prior to erosion. The drill site is located offshore of an eroding Ice Complex coastal bluff (Figure
1c), making it likely that the drill site was frozen at the time that it was flooded.

The mean rate of permafrost degradation since inundation can be estimated by comparing the distance of
the borehole from the coast to the modern coastline retreat rate and assuming that (a) mean annual
erosion rates have not changed during this period and (b) that the profile was frozen prior to inundation.
The approximately 70 km long western coastline of the Buor Khaya Peninsula has been eroding along
most of its length at a mean annual rate of 0.5m yr�1 for the past 42 years and at 1.4 ± 0.8myr�1 along a
segment closest to the borehole site [Günther et al., 2012], where the coastline exposes an Ice Complex
upland (described below). This is more rapid than the local mean long-term rate of coastal retreat for the
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Buor Khaya coast but lower than themean of 2.2 yr�1 for the erosional coasts of the Laptev Sea [Günther et al.,
2013b]. Based on these values and assuming that coastal erosion rates have varied negligibly since the
high stand of the Holocene transgression was reached 5 cal ka [Bauch et al., 2001], the borehole site was
flooded around 540years ago, which would mean that the ice-bonded permafrost has degraded to its
current position at 24.75m bsf at a mean rate of 5.3± 2.7 cmyr�1. This value falls within the range of
observed submarine permafrost degradation rates near the coast (<10m water depth), which lie between 1
and 15 cmyr�1 at 12 sites with varying geomorphology and coastline change rates in the Laptev and East
Siberian Seas [Overduin et al., 2007].

5.2. Methane in Degrading Permafrost

We present data on methane concentrations and stable carbon isotope signatures in thawing submarine
permafrost of the East Siberian shelf. To estimate rates of methane release from degrading permafrost,
methane concentrations were integrated over the frozen sections of the core, implicitly assuming that
methane concentrations were representative for the core sections from which they were sampled. This is
equivalent to a core-section length-weighted mean methane concentration for the frozen portion of the
core and gives the amount of methane observed over this length. The resulting methane concentration per
volume of ice-bonded permafrost for segment I is 2.3± 2.1μgCH4 cm

3 (for which the standard deviation of
the concentration is taken as the uncertainty). Combined with the estimate for permafrost degradation rate,
this suggests that thawing of the recovered frozen core releases interstitial methane at a mean rate of 2.1
± 1.2 nmol cm�3 d�1 or 121±64mgm�2 yr�1. Measured methane concentrations in the frozen sediment
layers are similar to the values in frozen sub-Ice Complex alluvial sands 12 km offshore in the western Laptev
Sea (mean: 365μM, n=43; recalculated from Koch et al. [2009] and Winterfeld et al. [2011]), where mean
submarine permafrost degradation rates are lower (1–2 cmyr�1). Methane concentrations in Holocene
surface deposits or late Pleistocene Ice Complex permafrost deposits that overlie these alluvial sands are
typically higher (mean: 1400μM, n=67; recalculated from Bischoff et al. [2013]).

Throughout segment II and at the boundary between unfrozen and frozen sediments, sulfate is present at up
to at least 4mM. Solute exclusion from ice in the pore space may result in higher concentrations locally in the
unfrozen pore water. The deep penetration of sulfate into the sediment indicates slow sulfate consumption
by sulfate-reducing bacteria due to limited anaerobic organic matter degradation. The low temperature, low
organic matter content, and presumably also low reactivity of the carbon under anaerobic conditions
[Knoblauch et al., 2013] restrain microbial activity in the overlying unfrozen sediments. There is no
indication for methanogenesis in the thawed permafrost layers of segment II. In the presence of elevated
sulfate concentrations, sulfate-reducing microorganisms out-compete methanogenic archaea [Lovley et al.,
1982]. Therefore, sulfate reduction is the most important pathway of anaerobic organic matter
degradation in marine sediments [Jørgensen, 1982]. The stable isotope signatures of methane in the frozen
part of the sediment are typical for those found in anaerobic layers of water-saturated soils with active
microbial methanogenesis including those affected by permafrost [Dorodnikov et al., 2013; Hodgkins et al.,
2014; Popp et al., 1999; Preuss et al., 2013]. The sharp decrease of methane concentrations and increase of
δ13C-CH4 values at the interface between frozen and overlying unfrozen sediment layers strongly indicate
microbial methane oxidation with sulfate as terminal electron acceptor [Fossing et al., 2000; Meister et al.,
2013; Whiticar, 1999] at or immediately above the interface between segments I and II. A similarly steep
gradient of methane concentrations and stable carbon isotope values of methane can also be found in
water-saturated soils across the boundary between aerobic and anaerobic conditions where molecular
oxygen instead of sulfate serves as electron acceptor for methane oxidation [Preuss et al., 2013; Whalen
and Reeburgh, 2000]. The observed high sulfate concentration throughout the overlying unfrozen layer
delivers large amounts of sulfate to the thaw front. The decrease in sulfate at the thaw front is primarily
the result of the impermeability of lower ice-bonded sediment and not controlled by methane release
rates. The oxidation of methane after thawing results in methane concentration less than 20μM in the
unfrozen layer above the ice-bonded permafrost, preventing methane from the thawed permafrost from
reaching the overlying bottom water, as long as methane transport is diffusive.

We cannot exclude the possibility that dissolved and vapor-phase gas concentrations in the ice-bonded
and overlying unfrozen sediment (segments I and II) were affected differently by coring. Pressure
changes associated with core recovery may have resulted in higher rates of degassing from the
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unfrozen sediment, leading to lowering
of methane concentrations, for example.
This source of uncertainty is difficult to
constrain without pressure coring or in
situ methods for dissolved methane
concentration determination in the
sediment column. Two factors suggest
that the lower methane concentrations
measured in segment II are not the
result of degassing, however. Carbon
dioxide measurements made on the
same samples showed no statistically
significant difference between segments
I and II, whereas methane did (Figure 6).
Second, the stable carbon isotope
signatures of methane in the two
segments also differed significantly,
a fractionation effect consistent with
microbial methane oxidation, but not
with sampling effects.

Submarine permafrost degradation plays
a unique role in marine carbon dynamics.
Inundation and subsequent thawing of

frozen sediment containing organic matter deliver organic carbon and methane stored in permafrost to
the sediment column. In contrast to marine sediments, where organic carbon is deposited on the seafloor
[Judd, 2004], permafrost thaw releases carbon to the unfrozen sediment column at the IBPT, whose
position changes over time. Penetration of sulfate, serving as electron acceptor for anaerobic organic
matter and methane oxidation, creates a capacity of the overlying unfrozen sediment column to oxidize
released methane. Therefore, it is unlikely that thawing submarine permafrost is a substantial methane
source for the overlying water column. Permafrost degradation may be associated with creating pathways
for methane release from other sources, such as gas deposits within or below permafrost [Dallimore and
Collett, 1995; Yakushev and Chuvilin, 2000]. Since the unfrozen sediment above the IBPT contains low
amounts of methane and elevated sulfate concentrations, which favor sulfate reduction instead of
methane production, it is unlikely that degrading submarine permafrost is the source of methane
ebullition to the water column of the central Laptev Sea shelf.

6. Conclusions

The texture, low organic carbon content (mean: 0.5wt %, range: 0.1–3.2wt %) and moderate mean
degradation rate (5.3 ± 2.7 cmyr�1) of submarine permafrost drilled in the central Laptev Sea are similar to
other regions of the East Siberian Arctic shelf. Methane concentrations in the ice-bonded permafrost are
higher than those in the overlying unfrozen sediment. As a consequence of thaw, methane present in
submarine permafrost is released within the sediment column at approximately 25m below the seafloor at
a rate of 2.1 ± 1.2 nmol cm�3 d�1 (or 121 ± 64mgm�2 yr�1). The observed profiles of sediment pore water
sulfate concentrations, as well as methane concentrations and stable carbon isotope ratios, indicate that
methane from ice-bonded permafrost is oxidized at or immediately following thaw. Anaerobic oxidation of
methane in the unfrozen sediment column between ice-bonded permafrost and the seabed makes it
unlikely that methane from thawing submarine permafrost could reach the seabed. Based on these results,
recent observations of methane release from the seabed in the study region do not derive from the
degradation of submarine permafrost but are probably associated with methane from other sources that can
permeate through permafrost-free sediment. One core is not sufficient to capture all processes related to
permafrost thawing on the Siberian shelf; further studies should include the analyses of methane from more
borehole sites in a variety of sites differing in geomorphology, period of inundation, and permafrost thaw rates.

Figure 6. The distribution of (left) measured methane and (right) carbon
dioxide concentrations in segments I (ice-bonded) and II (unfrozen)
expressed in nmol/g dry sediment, determined in each case on the same
samples.
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