English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mehr Moor? : zur Treibhausgasdynamik wiedervernässter Feuchtgebiete

Authors
/persons/resource/tsachs

Sachs,  Torsten
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/koebsch

Koebsch,  Franziska
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/danifr

Franz,  Daniela
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/larmanou

Larmanou,  Eric
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/andrei

Serafimovich,  Andrei
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kkohn

Kohnert,  Katrin
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Inorganic and Isotope Geochemistry, 4.0 Chemistry and Material Cycles, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Jurasinski,  Gerald
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
External Organizations;

Augustin,  Jürgen
Vol. 5, Issue 1 (2015), GFZ Journal 2015, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
External Organizations;

External Ressource
Fulltext (public)

GFZ_syserde.05.01.04.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sachs, T., Koebsch, F., Franz, D., Larmanou, E., Serafimovich, A., Kohnert, K., Jurasinski, G., Augustin, J. (2015): Mehr Moor?: zur Treibhausgasdynamik wiedervernässter Feuchtgebiete. - System Erde, 5, 1, 22-27.
https://doi.org/10.2312/GFZ.syserde.05.01.4


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1199648
Abstract
The Earth and its surface are tightly linked to the global climate system by turbulent exchange fluxes of energy and matter, for example greenhouse gases. This is true both for “deep Earth” geologically generated heat or gases reaching the surface and those of biogenic origin in the near-surface environment. For a better understanding of Earth-atmosphere interactions and in particular their feedbacks, the Helmholtz Young Investigators Group TEAM at GFZ studies the surface-atmosphere exchange of heat, water vapor, carbon dioxide (CO2) and methane (CH4) on a range of temporal and spatial scales – from hours to years and from < 1m² to more than 10 000 km². A regional focus is on degraded peatlands. While natural peatlands play a central role in the climate system as major carbon sink storing twice the amount of carbon that is contained in the Earth’s forests, a large fraction of the world’s peatlands has been drained for agriculture and subsequently lost that carbon storage capacity. Drained and degraded peatlands are significant and longterm carbon dioxide sources and thus contribute to further climate warming. In NE Germany, up to 20 % of the overall carbon dioxide emissions are from drained peat and a tool in reducing national greenhouse gas emission is therefore the re-wetting of peatlands to restore their natural carbon sink capacity. TEAM monitors the long-term greenhouse gas dynamics in such re-wetted sites and investigates the underlying processes and spatiotemporal drivers of the dynamics.