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Abstract
The Arctic permafrost regions make up the largest area component of the cryosphere.
Observations from the Gravity Recovery and Climate Experiment (GRACE) mission offer to
provide a greater understanding of changes in water mass within permafrost regions. We
investigate a GRACE monthly time series, snow water equivalent from the special scanning
microwave imager (SSM/I), vegetation water content and soil moisture from the advanced
microwave scanning radiometer for the Earth observation system (AMSR-E) and in situ
discharge of the Lena, Yenisei, Ob’, and Mackenzie watersheds. The GRACE water equivalent
mass change responded to mass loading by snow accumulation in winter and mass unloading by
runoff in spring–summer. Comparison of secular trends from GRACE to runoff suggests
groundwater storage increased in the Lena and Yenisei watersheds, decreased in the Mackenzie
watershed, and was unchanged in the Ob’ watershed. We hypothesize that the groundwater
storage changes are linked to the development of closed- and open-talik in the continuous
permafrost zone and the decrease of permafrost lateral extent in the discontinuous permafrost
zone of the watersheds.
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1. Introduction

Permafrost is the largest component of the cryosphere by
area extent [1]. Degradation of ice-rich permafrost can
lead to significant surface subsidence, affecting changes
in the ecosystem, landscape and, where human habitats
are established, causing significant infrastructure damage.
The process of surface freezing and thawing, growth
and degradation of permafrost affects the land surface
energy and moisture fluxes (balances) which in turn
impact biogeochemical cycles, climate and hydrological
systems [2, 3].

Terrestrial hydrological processes in the northern latitude
regions are controlled by the presence or absence of permafrost
and the thickness of the active layer, the top layer of soil
that thaws and freezes in the seasonal cycle [4, 5]. Beneath
the active layer and within permafrost are layers and vertical
bodies of unfrozen material, talik [6]. Talik is formed by
hydrothermal and thermal processes near and beneath the

ground surface [7]. Closed-talik can be laterally extensive
within permafrost and beneath rivers. Meander migration on
the Eagle River, Yukon, Canada, north of the Arctic Circle
in the continuous permafrost zone, was responsible for a
thickening of about 0.55 m yr−1 of talik beneath the river
bed based on point-bar ages determined by tree coring [8].
Open-talik is laterally enclosed by permafrost and connects the
ground surface to the unfrozen material beneath permafrost.
Talik is most common in the discontinuous permafrost zone,
and occurs within permafrost of the continuous and sporadic
permafrost zones.

Permafrost, in particular ice-rich layers at depth, acts
as an aquiclude which prevents storage and movement
of groundwater [6]. Talik acts as an aquifer to allow
for movement and temporary storage of groundwater.
Groundwater occurs within taliks above permafrost and
beneath lake beds and river channels. Within permafrost,
groundwater held within talik is sustained by water flow
through subsurface networks. Groundwater also occurs
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beneath permafrost in earth materials above the freezing point
of water. Where talik networks connect groundwater to river
and stream networks on the surface, runoff can be sustained
throughout the year, even in continuous permafrost zones with
very harsh climate conditions.

Geographically diverse observations of permafrost tem-
perature (∼2 m depth) have shown temporally and spatially
non-uniform changes, mostly increases, over the 20th cen-
tury [3]. These correlate well to surface air temperature
changes on decadal timescales. Permafrost temperatures in
eastern Siberia show the largest magnitude of increase of
a few degrees centigrade whereas parts of western North
America have lower magnitudes of permafrost temperature
increase. Increasing surface air temperatures, from climate
warming over the same period, often cannot fully account for
increasing permafrost temperatures, suggesting that variability
and secular trends in snow cover may be a contributing
factor [9]. Satellite data suggest that the total area of
thermokarst lakes (i.e. lakes formed by processes of permafrost
degradation) in the continuous permafrost zone in Siberia
increased by 12% over the last 30 years, while the number of
such lakes increased by 4% [10].

We investigated the GRACE measurements of mass
change in the Lena, Yenisei, Ob’ and Mackenzie River
watershed regions (figure 1). These rivers provide the bulk of
freshwater flux to the Arctic Ocean, with as much as 45% by
the Eurasian watersheds [11, 12]. This is an important factor
in ocean salinity and sea ice conditions with feedbacks with
the ice flux through Fram Strait–Greenland Sea and global
thermohaline circulation [13–15]. Reservoir construction on
the Eurasian watersheds in particular over the 20th century
altered streamflow seasonality but had little effect on annual
discharge [12, 16, 17]. In this investigation we seek to explore
the linkages between the secular trends and variations in water
equivalent mass change from GRACE and those of surface
water components relative to the character of the permafrost
distribution within the watersheds.

2. Data and methods

Since February 2002, the joint US–German (National Aero-
nautics and Space Administration–Deutsches GeoForschungs
Zentrum) Gravity Recovery and Climate Experiment (GRACE)
has been providing datasets on the Earth’s near-surface water
equivalent mass changes [18–23]. Mass variations averaged
over nominal monthly durations correspond mostly to water
(i.e. water equivalent). The mass changes are coupled to
high accuracy onboard GPS location determinations and star-
tracking instruments to reference them to the International
Terrestrial Reference Frame 2005. We employ the science
level grids Release-04 (R4) Level-3 300 km smoothed grids.
These grids have 1◦ × 1◦ longitude–latitude posting of the
water equivalent mass change, on a nominal monthly basis,
complete to degree and order 40 (D P Chambers 2008 personal
communication1). Adjustments include removal of time-
variable mass change effects from fluid and solid-body tides

1 ftp://podaac.jpl.nasa.gov/pub/tellus/monthly mass grids/
chambers-destripe/dpc200711/doc/GRACE-dpc200711 RL04.pdf

Figure 1. Northern hemisphere permafrost and watershed regions.
Permafrost map derived in part from the UN Environmental Program
Arctic Environmental Atlas. Digitized watershed outlines are based
on data from ArcticRIMS.

and atmosphere, and geoid. Previous studies have investigated
estimates of basin-scale evapotranspiration, surface snow mass
change and river discharge using GRACE coefficients up to
degree and order 70 and higher [24–28]. We utilized a
global grid for removal of glacial isostatic adjustment based
on ICE-5G (VM2) provided by the GRACE science team [29].
Terrestrial GRACE water equivalent mass changes correspond
to the climate-driven variation in land water storage if solid
deformation effects are not factors [19, 30]. In their absence,
estimates of water mass change are the summation of changes
from soil moisture, river discharge, precipitation (including
snow accumulation), vegetation water content and changes in
water storage in the subsurface.

Global snow water equivalent estimates were derived from
the NOAA Defense Meteorological Satellite Program by the
SSM/I sensor. The data were provided by the National Snow
and Ice Data Center (NSIDC). Snow water equivalent estimates
in units of millimeters were derived using the horizontally
polarized difference algorithm for the 19 and 37 GHz channels
from daily orbit swath acquisitions [31]. Missing retrievals due
to swath coverage gaps were interpolated from neighboring
swaths. Nominal spatial resolution was about 69 × 43 km2.
Data were gridded in the equal-area Ease-grid projection
system at 25 km × 25 km grid intervals.

Global vegetation water content and soil moisture were
derived from the AMSR-E sensor and provided by NSIDC.
Vegetation water content and soil moisture (skin layer,
∼1 cm thickness) estimates in units of kg m−2 and g cm−3,
respectively, were derived using the normalized polarization

2

ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf
ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf


Environ. Res. Lett. 4 (2009) 045009 R R Muskett and V E Romanovsky

Figure 2. GRACE-derived water equivalent mass changes on the northern hemisphere during September 2006 and May 2007.

difference algorithm employing the C and X channels from
global orbit swaths acquired daily [32, 33]. Nominal spatial
resolution was about 38 km2 at 10.7 GHz. Data were gridded
in the equal-area Ease-grid projection system at 25 km×25 km
grid intervals. Vegetation water content derives from the leaf
structure of canopy and vesicular plants on the ground.

Monthly GRACE water equivalent change, SSM/I snow
water equivalent and AMSR-E vegetation water content and
soil moisture were extracted within the geographic extents
of the Lena, Yenisei, Ob’ and Mackenzie watershed regions.
Area-average sample mean, standard deviation and standard
error were computed to compose time series, for the watershed
total area and on 5◦ ×5◦ sub-regions. Least-squares regression
was computed for each time series to derive secular trends with
uncertainties.

Measurements (at gauging stations) of surface water
discharge (runoff) in the watersheds were provided by
ArcticRIMS (daily/monthly provisional data from 2000 to
2009) and R-Arctic-NET (archive monthly data from 1930
to 2000). Monthly discharge from stations at Kusur (Lena),
Igarka (Yenisei), Salekhard (Ob’) and Arctic Red River
(Mackenzie) were primarily used. The archival periods of the
discharged records of each watershed stations used varied in
total number of years; Kusur covered a period from 1935 to
2000, Igarka from 1936 to 1999, Salekhard from 1930 to 1999,
and Arctic Red River from 1972 to 2000. The archival records
were compared to the provisional records to help identify
discharge anomalies.

3. Results

3.1. Seasonal water equivalent mass changes

GRACE, SSM/I, AMSR-E and ground measured runoff all
showed internally consistent seasonal variations within the

watershed regions. GRACE minima occurred in September–
October and maxima occurred in April–May. Figure 2
illustrates the GRACE water equivalent mass changes within
the months of September 2006 and May 2007. These represent
the seasonal minima in 2006 and maxima in 2007 on the
watersheds. The timing of the minima–maxima gives rise to
the shape of the time series being saw-toothed: a gradual climb
in water equivalent mass during winter with a steep decline
during June and afterward until minimum.

Figures 3 (Lena, Yenisei) and 4 (Ob’, Mackenzie) show
the monthly time series of watershed-region-averaged GRACE
and SSM/I, the in situ mean monthly runoff (blue vertical bars)
and the annual runoff time series from August 2002 through
March 2008 in volume water equivalent cubic kilometers
(km3), equivalent to gigatons (Gt) of water mass changes.
Annual runoff was summed from August to July over the
GRACE period years; a water-year time series is traditionally
from September to August. Bracketing T-bars correspond to
standard deviations. SSM/I minima occurred through the late
spring and summer months. SSM/I maxima occurred over
February through March. The SSM/I maxima occurred ahead
of the GRACE maxima by one to two months. Monthly
runoff showed consistent maxima in June and minima in April.
Seasonality of runoff was almost perfectly antisymmetric to
GRACE seasonality. The month of the maximum in mean
runoff occurred one to two months after the GRACE maxima.
Note the asymmetry of the GRACE time series: the gradual
increase following the minima corresponds to period of snow
mass loading, and the sharp decrease following the maxima
corresponds with the month of maximum runoff and water
mass unloading.

SSM/I snow water equivalent had low mean values on
coastal/tundra and larger mean values on interior portions of
the Eurasian watersheds. The Mackenzie had low mean values
of snow water equivalent on its western portions relative to
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Figure 3. Water equivalent secular trends from GRACE (gold square
series), SSM/I (light-blue diamond series) and runoff (monthly series
as blue bar, and annual series as blue circle series) in the Lena and
Yenisei River watersheds.

the eastern portions. This likely corresponds to an orographic
shadow effect.

Inspection of the archival records allowed for qualitative
comparison with the provisional monthly data. This
analysis identified months of abnormal high runoff in August,
September and October 2002 on the Ob’ (figure 4, Ob’ with
red vertical bars). The August–September 2002 GRACE water
equivalent changes (dark orange squares) reflect the additional
mass from unseasonal high runoffs associated with extreme
flooding in central Europe [34]. Flooding on the Ob’ and other
Arctic rivers has been associated with the spring snow melt,
river ice break-up and precipitation [35, 36].

Monthly (daytime and nighttime) AMSR-E vegetation
water content and soil moisture were averaged on the
watersheds and compared to the GRACE and SSM/I time
series. During winter months, AMSR-E retrievals showed very
small spatially correlated vegetation water content and soil
moisture values rimming large ice-covered lakes and wetlands
and along the northern coasts. Skin temperatures derived from
the moderate imaging spectroradiometer (MODIS) showed
frozen ground conditions. We thus suspect the AMSR-E
retrievals in winter to be low-limit errors of the polarization
ratio retrieval algorithm. The months of December through
March were then excluded from the final time series analysis.
Over the period from August 2002 to March 2008, no

Figure 4. Water equivalent secular trends from GRACE (gold square
series), SSM/I (light-blue diamond series) and runoff (monthly series
as blue bar and annual series as blue circle series) in the Ob’ and
Mackenzie River watersheds. Two months of runoff from the Ob’ are
colored red with two months of GRACE circled to indicate higher
water mass levels due to unseasonal (extreme) flooding events.

Table 1. AMSR-E mean water mass of vegetation and soil, April
through September, 2002 through 2007, in the Eurasian and North
American permafrost watersheds.

Watershed Vegetation water mass Soil water mass

Lena 6.17 ± 1.64 Gt 4.30 ± 0.31 Gt
Yenisei 7.25 ± 0.86 Gt 4.45 ± 0.46 Gt
Ob’ 7.39 ± 1.47 Gt 4.49 ± 0.42 Gt
Mackenzie 5.28 ± 0.35 Gt 3.79 ± 0.37 Gt

significant increasing or decreasing trends were present. Mean
vegetation water mass during April through September ranged
from 5.28 ± 0.35 Gt (Mackenzie) to 7.39 ± 1.47 Gt (Ob’)
(table 1). Mean soil water mass over the same period
ranged from 3.79 ± 0.37 Gt (Mackenzie) to 4.49 ± 0.42 Gt
(Ob’).

On 5◦ × 5◦ sub-regions, latitudinal (and terrain) variations
of vegetation water and soil moisture were noted. AMSR-E
mean vegetation and soil water mass were lowest on the tundra
(0.09±0.06 Gt, 0.23±0.05 Gt—Lena delta and lowlands) and
higher mean values on boreal forest (0.69±0.09 Gt, 0.39±0.03
Gt—Yenisei uplands).
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Table 2. Trends of GRACE (water equivalent mass), SSM/I (snow
water equivalent) and runoff from August 2002 to March 2008 in the
Eurasian and North American permafrost watersheds.

Watershed
GRACE
(km3 yr−1)

SSM/I
(km3 yr−1)

Runoff
(km3 yr−1)

Lena +44.69 ± 8.36 +5.88 ± 14.27 +39.35 ± 13.30
Yenisei +37.75 ± 8.83 −0.02 ± 9.76 +14.64 ± 23.22
Ob’ +22.69 ± 8.49 −0.32 ± 12.42 +21.72 ± 17.00
Mackenzie −5.58 ± 7.18 +9.94 ± 10.40 −0.04 ± 7.60

3.2. Trends of water mass changes

GRACE, SSM/I and annual runoff of water equivalent mass
changes in the Lena, Yenisei, Ob’ and Mackenzie watersheds
are given in table 2 and figures 3–5. GRACE trends indicate
the Lena watershed had the largest water equivalent mass gain
of 44.69 ± 8.36 km3 yr−1 and the Ob’ watershed had the
least water equivalent mass gain of 22.69 ± 13.49 km3 yr−1 of
the Eurasian watersheds. The Mackenzie watershed in North
America showed nominal mass loss of 5.58 ± 7.18 km3 yr−1

(table 2).
SSM/I trends (table 2, figures 3–5) showed magnitudes

of snow water equivalent that were one to two orders of
magnitude less than GRACE trends in the Eurasian watersheds.
The Mackenzie watershed trend, though of similar magnitude,
was of opposite sign (increase) relative to the GRACE trend
(decrease). Uncertainties in the SSM/I trends were greater than
those of GRACE in the Lena, Ob’ and Mackenzie watersheds,
and of similar magnitude in the Yenisei watershed.

In all cases the SSM/I trends are discordant with those
from GRACE (figures 3–5). This suggests snow water
equivalent is not the dominant component of the increased
GRACE water mass secular trends in the Eurasian watersheds.
The Mackenzie watershed interestingly had a relatively strong
increased trend of snow water equivalent, unlike its Eurasian
counterparts. SSM/I secular trends were discordant to annual
runoff trends as well.

Annual runoff trends compare well to GRACE trends in
the Eurasian watersheds (table 2, figures 3–5). Uncertainties in
annual runoff were much higher that those of GRACE. Runoff
during August 2002 through July 2003 was not included in
the Ob’ annual runoff time series due to the anomalous high
discharge values during August through October 2002.

4. Discussion

In our study, water equivalent mass changes from GRACE
solutions up to degree and order 40 were compared with
surface water changes estimated from space-borne passive
microwave sensors on SSM/I and AMSR-E, and in situ
monthly mean runoff in the Arctic permafrost watersheds of
the Lena, Yenisei, Ob’ and Mackenzie regions. The Lena
watershed region contains an appreciable extent and volume of
ground ice (Yedoma ice complex) but it and the other Siberian
watersheds were not glaciated during the Pleistocene [37, 38].
Therefore, a solid Earth deformation effect on the area-
averaged GRACE monthly water equivalent mass changes and
secular trends can be ruled out. In the absence of signal

Figure 5. Comparison of secular trend magnitudes (uncertainties
given by T-bar) of water equivalent changes from GRACE, runoff
and SSM/I. Comparative differences of GRACE to runoff given by
horizontal dashed lines and symbols (b1 through b4) are discussed in
the text.

noise and solid Earth deformation, estimates of water mass
change by GRACE would be the summation of climate-
driven near-surface water mass changes in the radial coordinate
relative to the geoid referenced by the ITRF2005 [22]. On
terrestrial watersheds and ocean basins, the relative mass
changes measured in the radial coordinate (after removal of
atmosphere and post-glacial rebound effects) are due to mass
redistributions by pressure and gravity gradients (i.e. lateral
mass transfers by flow).

Examination of the time series (figures 3 and 4) indicated
that GRACE water equivalent mass changes are sensitive to
the timing of mass loading from winter snow water equivalent
and mass unloading from spring runoff on the Arctic Eurasian
and North American watersheds. Trends of water equivalent
mass change showed the Lena watershed had the most water
mass gain, followed by Yenisei and Ob’ (figures 3 and 4 and
table 2). Trends of snow water equivalent from SSM/I were
near zero in the Yenisei and Ob’ watersheds, and modestly
increased in the Lena and Mackenzie watersheds. Annual
runoff trends showed the largest increase in the Lena, followed
by the Ob’ and Yenisei, respectively, with the Mackenzie near
zero. Qualitatively the annual runoff trends agree with trends
from 1964 to 2000 [39]. For Arctic permafrost watersheds we
can formulate a trend–balance relationship as

�TGRACE = �P + �G + �R. (1)

In this formalism �TGRACE is the trend of total change
observed by GRACE, �P is the trend of effective precipitation
change (dominated by snow accumulation minus sublimation
and ablation in winter and by wet precipitation minus
evapotranspiration in summer), �G is the trend of groundwater
storage change (neglecting changes in additional surface
water impoundments by dams and reservoirs over the short
time period) and �R is the trend of annual runoff from
the watersheds. �R captures the mass of winter snow
accumulation as the mass of spring snow melt.

GRACE, SSM/I and annual runoff trend magnitudes and
uncertainties in the watersheds are plotted in figure 5 for
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comparison. The trends of snow water equivalent from SSM/I
in the Yenisei and Ob’ watersheds are near zero, and those
in the Lena and Mackenzie watersheds show small increases
relative to GRACE and annual runoff.

Continuous permafrost, as a percentage of the total
watershed area, varies from about 80% in Lena, 32% in
Yenisei, 1% in Ob’ and 30% in Mackenzie [40]. Given
that continuous permafrost acts as an aquiclude whereas talik
(unfrozen material within permafrost) acts as an aquifer, we
hypothesize that the differences (b1 through b4, figure 5) are
linked to the development of closed- and open-talik within the
continuous permafrost zone, and decrease in volume occupied
by permafrost in the discontinuous permafrost zone. Open-
talik in continuous and discontinuous permafrost can form
pathways for groundwater movement into or out of thermokarst
lakes and river channels [6, 41]. Long-term expansion of
existing taliks and new taliks at depth can be driven by
thermokarst processes associated with river migration and
lake expansion and by the more significant impact of moving
groundwater on the warming of permafrost [8, 42–44]. Open-
talik development and expansion could have the potential
of reducing groundwater residence time by storage depletion
and conversely increasing groundwater residence time by
recruitment of surface water into groundwater storage. These
considerations indicate equation (1) can be evaluated as

�G ∼= �TGRACE − �R (2)

in the Arctic permafrost watersheds of Eurasia and North
America. Therefore, the differences (b1 through b4, figure 5)
of the magnitudes of the GRACE trends with those of annual
runoff trends point to three deductions.

(1) Lena and Yenisei differences suggest an increase
in groundwater storage; 5.34 km3 yr−1 (b1) and
23.11 km3 yr−1 (b2), respectively.

(2) Ob’ difference suggests nominal increase in groundwater
storage; 0.98 km3 yr−1 (b3).

(3) Mackenzie difference suggests a decrease in groundwater
storage; 5.54 km3 yr−1 (b4).

Monthly runoff of the watersheds showed increases during
the seasonal minimum; Lena had +1.22 ± 0.38 km3/April,
+ Yenisei had 1.29 ± 1.78 km3/April, Ob’ had +0.07 ±
0.48 km3/April and Mackenzie had +0.23 ± 0.34 km3/April.
The seasonal maximum on the watersheds showed increases on
three and one decrease; Lena had +15.97 ± 3.41 km3/June,
Yenisei had −6.85 ± 7.75 km3/June, Ob’ had +0.31 ±
1.55 km3/June and Mackenzie had +0.9 ± 1.57 km3/June.
These may be due in part to water regulation practices by
dams [12, 16, 17].

Permafrost and talik play a major role in drainage
characteristics in Arctic watersheds [2, 45–47]. Watersheds
with a low percentage of permafrost and well-developed talik
have baseflow (that part of the discharge, i.e. runoff, derived
from groundwater) of about 80% of discharge. Watersheds
with a high percentage of permafrost and poorly developed
talik have baseflow from 50% to 60% of discharge in early
summer to values like those of low-permafrost watersheds.

Therefore, the GRACE monthly water equivalent mass
changes captured the changes of baseflow from groundwater
storage changes, in addition to surface water changes in the
Arctic permafrost watersheds of Eurasia and North America.

Under this interpretation we refer to figure 2, showing the
GRACE-derived mass changes on the northern hemisphere in
September 2006 and May 2007. Recall that those months were
the respective minimum and maxima of water equivalent mass
change on the Arctic watersheds. Compare these changes to
those on the Chukchi and East Siberian Seas of the Arctic
Ocean as illustrated (figure 2). As the Arctic watersheds
were reaching their minimum in September 2006, these seas
were experiencing increased mass, and as the watersheds
were reaching their maximum in May 2007, the seas were
experiencing decreased mass. These patterns are persistent
in those months over the period from 2002 through 2007.
We note that the GRACE-derived mass changes on the Arctic
Ocean have multi-source barotropic and baroclinic transfers
and possible spatial leakage of signal along the sea coasts [48].
Changes in freshwater discharge affect salinity, temperature
and density of ocean water, which changes the mass budget and
area-averaged sea level [27, 49]. A better tide model and polar
motion adjustments in GRACE processing are still needed, in
particular for the Arctic [50–52].

On longer timescales, significant changes of permafrost
and linked responses to climate and ecosystems (water cycle
and carbon stocks) have occurred [3, 4, 46, 53]. Modeling of
the regional permafrost environments with general circulation
model scenarios suggests significant changes in permafrost
distribution are likely over the next century [5, 43, 54].

5. Conclusions

In this paper we have examined monthly water mass
changes from GRACE, SSM/I, AMSR-E and station-recorded
discharge of the Lena, Yensei, Ob’ and Mackenzie watershed
regions of Eurasia and North America. The time series covered
the period from August 2002 to March 2008. Comparison of
the time series showed that GRACE-derived water equivalent
mass changes responded closely on a monthly basis to winter
snow water mass loading (SSM/I snow water equivalent) and
spring water mass unloading (runoff). AMSR-E vegetation
water and soil water mass time series had no increasing
or decreasing trends. Differencing the GRACE and annual
runoff trends showed differences that we interpret as reflecting
changes in groundwater storage.

(1) Lena and Yenisei showed increases in groundwater
storage.

(2) Ob’ showed a nominal increase in groundwater storage.
(3) Mackenzie showed a decrease in groundwater storage.

Whereas GRACE water equivalent mass changes on
other terrestrial parts of the globe derive from surface water
changes, on the permafrost watersheds GRACE captured water
mass changes from changes in groundwater storage. We
hypothesize that these groundwater storage changes are linked
to the development of new closed- and open-talik within
the continuous permafrost zone, and a decrease in volume
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occupied by permafrost in the discontinuous permafrost zone.
In particular, development of new open-talik in the former zone
and expansion of existing open-talik in the latter could have the
potential of reducing groundwater residence time by storage
depletion (Mackenzie watershed) and conversely increasing it
by recruitment of surface water into groundwater storage (Lena
and Yenisei watersheds).
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